IDEAS home Printed from https://ideas.repec.org/p/tse/iastwp/127935.html
   My bibliography  Save this paper

Life history and mutation rate joint evolution

Author

Listed:
  • Avila, Piret
  • Lehmann, Laurent

Abstract

The cost of germline maintenance gives rise to a trade-off between lowering the deleterious muta-tion rate and investing in life history functions. Therefore, life history and the mutation rate evolve jointly, but this coevolution is not well understood. We develop a mathematical model to analyse the evolution of resource allocation traits affecting simultaneously life history and the deleterious mutation rate. First, we show that the invasion fitness of such resource allocation traits can be approximated by the basic reproductive number of the least-loaded class; the expected lifetime pro-duction of offspring without deleterious mutations born to individuals without deleterious mutations. Second, we apply the model to investigate (i) the joint evolution of reproductive effort and germline maintenance and (ii) the joint evolution of age-at-maturity and germline maintenance. This analysis provides two biological predictions. First, under higher exposure to environmental mutagens (e.g. oxygen), selection favours higher allocation to germline maintenance at the expense of life history. Second, when exposure to environmental mutagens is higher, life histories tend to be faster with individuals having shorter life spans and smaller body sizes at maturity. Our results suggest that mutation accumulation via the cost of germline maintenance is a major force shaping life-history traits.

Suggested Citation

  • Avila, Piret & Lehmann, Laurent, 2023. "Life history and mutation rate joint evolution," IAST Working Papers 23-151, Institute for Advanced Study in Toulouse (IAST).
  • Handle: RePEc:tse:iastwp:127935
    as

    Download full text from publisher

    File URL: http://iast.fr/pub/127935
    File Function: null
    Download Restriction: no

    File URL: https://www.iast.fr/sites/default/files/IAST/wp/wp_iast_151.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Priklopil, Tadeas & Lehmann, Laurent, 2021. "Metacommunities, fitness and gradual evolution," Theoretical Population Biology, Elsevier, vol. 142(C), pages 12-35.
    2. Baumdicker, Franz & Sester-Huss, Elisabeth & Pfaffelhuber, Peter, 2020. "Modifiers of mutation rate in selectively fluctuating environments," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6843-6862.
    3. Fabio Dercole & Sergio Rinaldi, 2008. "Introduction to Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications," Introductory Chapters, in: Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications, Princeton University Press.
    4. Avila, Piret & Mullon, Charles, 2023. "Evolutionary Game Theory and the Adaptive Dynamics Approach: Adaptation where Individuals Interact," IAST Working Papers 23-150, Institute for Advanced Study in Toulouse (IAST).
    5. Jakob J Metzger & Stephan Eule, 2013. "Distribution of the Fittest Individuals and the Rate of Muller's Ratchet in a Model with Overlapping Generations," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingela Alger & Laurent Lehmann, 2023. "Evolution of Semi-Kantian Preferences in Two-Player Assortative Interactions with Complete and Incomplete Information and Plasticity," Dynamic Games and Applications, Springer, vol. 13(4), pages 1288-1319, December.
    2. Ingela Alger & Slimane Dridi & Jonathan Stieglitz & Michael Wilson, 2022. "The evolution of early hominin food production and sharing," Working Papers hal-03681083, HAL.
    3. Priklopil, Tadeas & Lehmann, Laurent, 2021. "Metacommunities, fitness and gradual evolution," Theoretical Population Biology, Elsevier, vol. 142(C), pages 12-35.
    4. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    5. Priklopil, Tadeas & Lehmann, Laurent, 2020. "Invasion implies substitution in ecological communities with class-structured populations," Theoretical Population Biology, Elsevier, vol. 134(C), pages 36-52.
    6. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    7. Thomas Graham & Maria Kleshnina & Jerzy A. Filar, 2023. "Where Do Mistakes Lead? A Survey of Games with Incompetent Players," Dynamic Games and Applications, Springer, vol. 13(1), pages 231-264, March.
    8. Peña, Jorge & Nöldeke, Georg & Puebla, Oscar, 2018. "The evolution of egg trading in simultaneous hermaphrodites," IAST Working Papers 18-85, Institute for Advanced Study in Toulouse (IAST).
    9. Giaimo, Stefano, 2022. "Selection on age-specific survival: Constant versus fluctuating environment," Theoretical Population Biology, Elsevier, vol. 145(C), pages 136-149.
    10. Éloi Martin & Sabin Lessard, 2023. "Assortment by Group Founders Always Promotes the Evolution of Cooperation Under Global Selection But Can Oppose it Under Local Selection," Dynamic Games and Applications, Springer, vol. 13(4), pages 1194-1218, December.
    11. Pierre Bernhard, 2015. "Evolutionary Dynamics of the Handicap Principle: An Example," Dynamic Games and Applications, Springer, vol. 5(2), pages 214-227, June.
    12. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    13. Kira Coder Gylling & Åke Brännström, 2018. "Effects of Relatedness on the Evolution of Cooperation in Nonlinear Public Goods Games," Games, MDPI, vol. 9(4), pages 1-13, November.
    14. Ivan Yegorov & Frédéric Grognard & Ludovic Mailleret & Fabien Halkett & Pierre Bernhard, 2020. "A Dynamic Game Approach to Uninvadable Strategies for Biotrophic Pathogens," Dynamic Games and Applications, Springer, vol. 10(1), pages 257-296, March.
    15. Feng, Minyu & Han, Songlin & Li, Qin & Wu, Juan & Kurths, Jürgen, 2023. "Harmful strong agents and asymmetric interaction can promote the frequency of cooperation in the snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    16. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    17. Evan Mitchell & Andrea L. Graham & Francisco Úbeda & Geoff Wild, 2022. "On maternity and the stronger immune response in women," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Keywords

    life-history evolution; mutation accumulation; adaptive dynamics; cost of fidelity; mutation rate evolution;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:iastwp:127935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iasttfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.