IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003303.html
   My bibliography  Save this article

Distribution of the Fittest Individuals and the Rate of Muller's Ratchet in a Model with Overlapping Generations

Author

Listed:
  • Jakob J Metzger
  • Stephan Eule

Abstract

Muller's ratchet is a paradigmatic model for the accumulation of deleterious mutations in a population of finite size. A click of the ratchet occurs when all individuals with the least number of deleterious mutations are lost irreversibly due to a stochastic fluctuation. In spite of the simplicity of the model, a quantitative understanding of the process remains an open challenge. In contrast to previous works, we here study a Moran model of the ratchet with overlapping generations. Employing an approximation which describes the fittest individuals as one class and the rest as a second class, we obtain closed analytical expressions of the ratchet rate in the rare clicking regime. As a click in this regime is caused by a rare, large fluctuation from a metastable state, we do not resort to a diffusion approximation but apply an approximation scheme which is especially well suited to describe extinction events from metastable states. This method also allows for a derivation of expressions for the quasi-stationary distribution of the fittest class. Additionally, we confirm numerically that the formulation with overlapping generations leads to the same results as the diffusion approximation and the corresponding Wright-Fisher model with non-overlapping generations.Author Summary: Muller's ratchet is a paradigmatic model in population genetics which describes the fixation of a deleterious mutation in a population of finite size due to an unfortunate stochastic fluctuation. Obtaining quantitative predictions of the ratchet rate, i.e. the frequency with which such a mutation fixes, is believed to be important for understanding a broad range of effects ranging from the degeneration of the Y-chromosome to the evolution of sex as a means of avoiding the fixation of deleterious mutations. To obtain a better understanding of how Muller's ratchet operates, we have considered a model with overlapping generations, which allows for the application of methods specifically tailored for the analysis of rare stochastic fluctuations which drive the ratchet. We obtain concise and accurate results for the rate of Muller's ratchet. Additionally, we are able to predict the full distribution of the frequency of the fittest individuals, a quantity of central interest in understanding the ratchet rate and possibly experimentally much more accessible than the rate, in particular when the ratchet rate is very large.

Suggested Citation

  • Jakob J Metzger & Stephan Eule, 2013. "Distribution of the Fittest Individuals and the Rate of Muller's Ratchet in a Model with Overlapping Generations," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-10, November.
  • Handle: RePEc:plo:pcbi00:1003303
    DOI: 10.1371/journal.pcbi.1003303
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003303
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003303&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rouzine, Igor M. & Brunet, Éric & Wilke, Claus O., 2008. "The traveling-wave approach to asexual evolution: Muller's ratchet and speed of adaptation," Theoretical Population Biology, Elsevier, vol. 73(1), pages 24-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avila, Piret & Lehmann, Laurent, 2023. "Life history and mutation rate joint evolution," IAST Working Papers 23-151, Institute for Advanced Study in Toulouse (IAST).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Good, Benjamin H. & Desai, Michael M., 2013. "Fluctuations in fitness distributions and the effects of weak linked selection on sequence evolution," Theoretical Population Biology, Elsevier, vol. 85(C), pages 86-102.
    2. Rouzine, Igor M. & Coffin, John M., 2010. "Multi-site adaptation in the presence of infrequent recombination," Theoretical Population Biology, Elsevier, vol. 77(3), pages 189-204.
    3. Jain, Kavita & John, Sona, 2016. "Deterministic evolution of an asexual population under the action of beneficial and deleterious mutations on additive fitness landscapes," Theoretical Population Biology, Elsevier, vol. 112(C), pages 117-125.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.