IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v134y2020icp36-52.html
   My bibliography  Save this article

Invasion implies substitution in ecological communities with class-structured populations

Author

Listed:
  • Priklopil, Tadeas
  • Lehmann, Laurent

Abstract

Long-term evolution of quantitative traits is classically and usefully described as the directional change in phenotype due to the recurrent fixation of new mutations. A formal justification for such continual evolution ultimately relies on the “invasion implies substitution†-principle. Here, whenever a mutant allele causing a small phenotypic change can successfully invade a population, the ancestral (or wild-type) allele will be replaced, whereby fostering gradual phenotypic change if the process is repeated. It has been argued that this principle holds in a broad range of situations, including spatially and demographically structured populations experiencing frequency- and density-dependent selection under demographic and environmental fluctuations. However, prior studies have not been able to account for all aspects of population structure, leaving unsettled the conditions under which the “invasion implies substitution†-principle really holds. In this paper, we start by laying out a program to explore and clarify the generality of the “invasion implies substitution†-principle. Particular focus is given on finding an explicit and functionally constant representation of the selection gradient on a quantitative trait. Using geometric singular perturbation methods, we then show that the “invasion implies substitution†-principle generalizes to well-mixed and scalar-valued polymorphic multispecies ecological communities that are structured into finitely many demographic (or physiological) classes. The selection gradient is shown to be constant over the evolutionary timescale and that it depends only on the resident phenotype, individual growth-rates, population steady states and reproductive values, all of which are calculated from the resident dynamics. Our work contributes to the theoretical foundations of evolutionary ecology.

Suggested Citation

  • Priklopil, Tadeas & Lehmann, Laurent, 2020. "Invasion implies substitution in ecological communities with class-structured populations," Theoretical Population Biology, Elsevier, vol. 134(C), pages 36-52.
  • Handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:36-52
    DOI: 10.1016/j.tpb.2020.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580920300332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2020.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabio Dercole & Sergio Rinaldi, 2008. "Introduction to Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications," Introductory Chapters, in: Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications, Princeton University Press.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priklopil, Tadeas & Lehmann, Laurent, 2021. "Metacommunities, fitness and gradual evolution," Theoretical Population Biology, Elsevier, vol. 142(C), pages 12-35.
    2. Peña, Jorge & González-Forero, Mauricio, 2020. "Eusociality through conflict dissolution via maternal reproductive specialization," IAST Working Papers 20-110, Institute for Advanced Study in Toulouse (IAST).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingela Alger & Slimane Dridi & Jonathan Stieglitz & Michael Wilson, 2022. "The evolution of early hominin food production and sharing," Working Papers hal-03681083, HAL.
    2. Priklopil, Tadeas & Lehmann, Laurent, 2021. "Metacommunities, fitness and gradual evolution," Theoretical Population Biology, Elsevier, vol. 142(C), pages 12-35.
    3. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    4. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    5. Thomas Graham & Maria Kleshnina & Jerzy A. Filar, 2023. "Where Do Mistakes Lead? A Survey of Games with Incompetent Players," Dynamic Games and Applications, Springer, vol. 13(1), pages 231-264, March.
    6. Peña, Jorge & Nöldeke, Georg & Puebla, Oscar, 2018. "The evolution of egg trading in simultaneous hermaphrodites," IAST Working Papers 18-85, Institute for Advanced Study in Toulouse (IAST).
    7. Avila, Piret & Lehmann, Laurent, 2023. "Life history and mutation rate joint evolution," IAST Working Papers 23-151, Institute for Advanced Study in Toulouse (IAST).
    8. Pierre Bernhard, 2015. "Evolutionary Dynamics of the Handicap Principle: An Example," Dynamic Games and Applications, Springer, vol. 5(2), pages 214-227, June.
    9. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    10. Kira Coder Gylling & Åke Brännström, 2018. "Effects of Relatedness on the Evolution of Cooperation in Nonlinear Public Goods Games," Games, MDPI, vol. 9(4), pages 1-13, November.
    11. Ivan Yegorov & Frédéric Grognard & Ludovic Mailleret & Fabien Halkett & Pierre Bernhard, 2020. "A Dynamic Game Approach to Uninvadable Strategies for Biotrophic Pathogens," Dynamic Games and Applications, Springer, vol. 10(1), pages 257-296, March.
    12. Evan Mitchell & Andrea L. Graham & Francisco Úbeda & Geoff Wild, 2022. "On maternity and the stronger immune response in women," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:36-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.