Advanced Search
MyIDEAS: Login

Parametric Bootstrap Methods for Bias Correction in Linear Mixed Models

Contents:

Author Info

  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

  • Bui Nagashima

    (Graduate School of Economics, University of Tokyo)

Registered author(s):

    Abstract

    The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM) is useful for the small area estimation, and the estimation of the mean squared error (MSE) of EBLUP is important as a measure of uncertainty of EBLUP. To obtain a second-order unbiased estimator of the MSE, the second-order bias correction has been derived mainly based on Taylor series expansions. However, this approach is harder to implement in complicated models with more unknown parameters like variance components, since we need to compute asymptotic bias, variance and covariance for estimators of unknown parameters as well as partial derivatives of some quantities. The same difficulty occurs in construction of confidence intervals based on EBLUP with second-order correction and in derivation of second-order bias correction terms in the Akaike Information Criterion (AIC) and the conditional AIC. To avoid such difficulty in derivation of second-order bias correction in these problems, the parametric bootstrap methods are suggested in this paper, and their second-order justifications are established. Finally, performances of the suggested procedures are numerically investigated in comparison with some existing procedures given in the literature.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2011/2011cf801.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-801.

    as in new window
    Length: 30 pages
    Date of creation: Apr 2011
    Date of revision:
    Handle: RePEc:tky:fseres:2011cf801

    Contact details of provider:
    Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Email:
    Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
    More information through EDIRC

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Basu, Ruma & Ghosh, J. K. & Mukerjee, Rahul, 2003. "Empirical Bayes prediction intervals in a normal regression model: higher order asymptotics," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 197-203, June.
    2. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    3. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238.
    4. Gauri Datta & Tatsuya Kubokawa & Isabel Molina & J. Rao, 2011. "Estimation of mean squared error of model-based small area estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 20(2), pages 367-388, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2011cf801. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.