Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecasting using a large number of predictors: Bayesian model averaging versus principal components regression

Contents:

Author Info

  • Rachida Ouysse

    ()
    (School of Economics, the University of New South Wales)

Abstract

We study the performance of Bayesian model averaging as a forecasting method for a large panel of time series and compare its performance to principal components regression (PCR). We show empirically that these forecasts are highly correlated implying similar mean-square forecast errors. Applied to forecasting Industrial production and in ation in the United States, we find that the set of variables deemed informative changes over time which suggest temporal instability due to collinearity and to the of Bayesian variable selection method to minor perturbations of the data. In terms of mean-squared forecast error, principal components based forecasts have a slight marginal advantage over BMA. However, this marginal edge of PCR in the average global out-of-sample performance hides important changes in the local forecasting power of the two approaches. An analysis of the Theil index indicates that the loss of performance of PCR is due mainly to its exuberant biases in matching the mean of the two series especially the in ation series. BMA forecasts series matches the first and second moments of the GDP and in ation series very well with practically zero biases and very low volatility. The fluctuation statistic that measures the relative local performance shows that BMA performed consistently better than PCR and the naive benchmark (random walk) over the period prior to 1985. Thereafter, the performance of both BMA and PCR was relatively modest compared to the naive benchmark.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://research.economics.unsw.edu.au/RePEc/papers/2013-04.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics, The University of New South Wales in its series Discussion Papers with number 2013-04.

as in new window
Length: 35 pages
Date of creation: Apr 2013
Date of revision:
Handle: RePEc:swe:wpaper:2013-04

Contact details of provider:
Postal: Australian School of Business Building, Sydney 2052
Phone: (+61)-2-9385-3380
Fax: +61)-2- 9313- 6337
Email:
Web page: http://www.economics.unsw.edu.au/
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  2. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-304, September.
  3. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  4. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
Full references (including those not matched with items on IDEAS)

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Summer Reading
    by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2013-07-02 22:16:00

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2013-04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gabriele Gratton).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.