IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2015_015.html
   My bibliography  Save this paper

Modeling the Geopolitics of Natural Gas: LNG Exports from the US to Eastern Europe

Author

Listed:

Abstract

In the course of the crisis in the Ukraine, most leading politicians in Eastern European countries, such as Poland, the Baltic States and Ukraine itself, identified the high dependency on natural gas imports from Russia as a threat to energy security. Hopes of independence through extraction of domestic shale gas resources, which evolved after the US shale gas revolution and the substantial resource estimations for Polish shale gas (published by the EIA in 2011 and updated 2013), are more topical than ever. However, there are several factors, which dim the hope for repetition of the US “shale gas revolution” in Eastern Europe. First, international companies such as Shell, ExxonMobil or Chevron withdrew from Poland and Ukraine due to poor exploration results. Additionally, because of environmental legislation and population density, the obstacles for commercial shale gas production within Europe, compared to the US, are very high. In this paper, the Global Gas Model (GGM) (Egging, 2013) is used to simulate future patterns of the Eastern European gas supply. Shale gas scenarios show that Poland and the Baltic States would lower their dependency with an annual production of 8 bcm (Poland) and 2 bcm (Baltic States) because of their relatively low natural gas consumption. This means, conversely, that a failing production of shale gas would lead to ongoing dependence on natural gas imports. In Ukraine, however, a potential shale gas production of 5 bcm/a does not have major consequences with respect to an annual consumption of up to 60 bcm. As for LNG scenarios, US LNG exports do barely reach the Eastern European gas market in the Base Case scenario. Only in the projected period between 2035 and 2040 Poland receives 4.9 bcm of US LNG. However, the Polish natural gas market is sensitive to provided subsidies. A 30% subsidy on transportation increases the total amount of exported LNG to Poland up to 8 bcm. In contrast, the Ukrainian and Baltic natural gas market, however, barely react to subsidies from the US. A minimum of 60% is needed to export US natural gas under economically rational conditions to both regions. Modeling results show that the increasing natural gas demand in Ukraine, the Baltic States and Poland is in need of either domestic shale gas production or an increase of pipeline or LNG imports.

Suggested Citation

  • Stähr, Fabian & Madlener, Reinhard & Hilgers, Christoph & Holz, Franziska, 2015. "Modeling the Geopolitics of Natural Gas: LNG Exports from the US to Eastern Europe," FCN Working Papers 15/2015, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2015_015
    as

    Download full text from publisher

    File URL: http://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabctywd
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
    2. repec:aen:journl:eeep4_1_chyong is not listed on IDEAS
    3. Huppmann, Daniel, 2013. "Endogenous production capacity investment in natural gas market equilibrium models," European Journal of Operational Research, Elsevier, vol. 231(2), pages 503-506.
    4. Richter, Philipp M. & Holz, Franziska, 2015. "All quiet on the eastern front? Disruption scenarios of Russian natural gas supply to Europe," Energy Policy, Elsevier, vol. 80(C), pages 177-189.
    5. Robert Baron, Paul Bernstein, W. David Montgomery, and Sugandha Tuladhar, 2015. "Macroeconomic Impacts of LNG Exports from the United States," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    6. repec:aen:journl:eeep4_1_montgomery is not listed on IDEAS
    7. Chi Kong Chyong and David M. Reiner, 2015. "Economics and Politics of Shale Gas in Europe," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    8. Franziska Holz & Philipp M. Richter & Ruud Egging, 2013. "The Role of Natural Gas in a Low-Carbon Europe: Infrastructure and Regional Supply Security in the Global Gas Model," Discussion Papers of DIW Berlin 1273, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egging-Bratseth, Ruud & Holz, Franziska & Czempinski, Victoria, 2021. "Freedom gas to Europe: Scenarios analyzed using the Global Gas Model," Research in International Business and Finance, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richter, Philipp M. & Holz, Franziska, 2015. "All quiet on the eastern front? Disruption scenarios of Russian natural gas supply to Europe," Energy Policy, Elsevier, vol. 80(C), pages 177-189.
    2. Holz, Franziska & Brauers, Hanna & Richter, Philipp M. & Roobeek, Thorsten, 2017. "Shaking Dutch grounds won’t shatter the European gas market," Energy Economics, Elsevier, vol. 64(C), pages 520-529.
    3. Holz, Franziska & Richter, Philipp M. & Egging, Ruud, 2016. "The Role of Natural Gas in a Low-Carbon Europe: Infrastructure and Supply Security," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37(SI37), pages 33-59.
    4. Egging-Bratseth, Ruud & Holz, Franziska & Czempinski, Victoria, 2021. "Freedom gas to Europe: Scenarios analyzed using the Global Gas Model," Research in International Business and Finance, Elsevier, vol. 58(C).
    5. Adrienn Selei & Borbála Tóth & Gustav Resch & László Szabó & Lukas Liebmann & Péter Kaderják, 2017. "How far is mitigation of Russian gas dependency possible through energy efficiency and renewable policies assuming different gas market structures?," Energy & Environment, , vol. 28(1-2), pages 54-69, March.
    6. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    7. Veronika Grimm & Lars Schewe & Martin Schmidt & Gregor Zöttl, 2019. "A multilevel model of the European entry-exit gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 223-255, April.
    8. Devine, Mel T. & Bertsch, Valentin, 2018. "Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model," European Journal of Operational Research, Elsevier, vol. 267(2), pages 643-658.
    9. Feijoo, Felipe & Huppmann, Daniel & Sakiyama, Larissa & Siddiqui, Sauleh, 2016. "North American natural gas model: Impact of cross-border trade with Mexico," Energy, Elsevier, vol. 112(C), pages 1084-1095.
    10. Baltensperger, Tobias & Füchslin, Rudolf M. & Krütli, Pius & Lygeros, John, 2016. "Multiplicity of equilibria in conjectural variations models of natural gas markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 646-656.
    11. Philipp M. Richter, 2015. "From Boom to Bust? A Critical Look at US Shale Gas Projections," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    12. Abrell, Jan & Chavaz, Léo & Weigt, Hannes, 2019. "Dealing with Supply Disruptions on the European Natural Gas Market: Infrastructure Investments or Coordinated Policies?," Working papers 2019/11, Faculty of Business and Economics - University of Basel.
    13. Egging, Ruud & Holz, Franziska, 2016. "Risks in global natural gas markets: Investment, hedging and trade," Energy Policy, Elsevier, vol. 94(C), pages 468-479.
    14. Ruud Egging & Franziska Holz, 2015. "Local Consequences of Global Uncertainty: Capacity Development and LNG Trade under Shale Gas and Demand Uncertainty and Disruption Risk," Discussion Papers of DIW Berlin 1498, DIW Berlin, German Institute for Economic Research.
    15. Tóth, Borbála Takácsné & Kotek, Péter & Selei, Adrienn, 2020. "Rerouting Europe's gas transit landscape - Effects of Russian natural gas infrastructure strategy on the V4," Energy Policy, Elsevier, vol. 146(C).
    16. András Kiss, Adrienn Selei, and Borbála Takácsné Tóth, 2016. "A Top-Down Approach to Evaluating Cross-Border Natural Gas Infrastructure Projects in Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    17. Bertsch, Valentin & Devine, Mel & Sweeney, Conor & Parnell, Andrew C., 2018. "Analysing long-term interactions between demand response and different electricity markets using a stochastic market equilibrium model," Papers WP585, Economic and Social Research Institute (ESRI).
    18. Murphy, Frederic & Pierru, Axel & Smeers, Yves, 2019. "Measuring the effects of price controls using mixed complementarity models," European Journal of Operational Research, Elsevier, vol. 275(2), pages 666-676.
    19. Egging, Ruud & Pichler, Alois & Kalvø, Øyvind Iversen & Walle–Hansen, Thomas Meyer, 2017. "Risk aversion in imperfect natural gas markets," European Journal of Operational Research, Elsevier, vol. 259(1), pages 367-383.
    20. Mendelevitch, Roman, 2013. "The Role of CO2-EOR for the Development of a CCTS Infrastructure in the North Sea Region: A Techno-Economic Model and Application," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79950, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    Liquefied Natural Gas; Shale Gas; Central and Eastern Europe; Subsidies;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • F14 - International Economics - - Trade - - - Empirical Studies of Trade
    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
    • Q34 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Natural Resources and Domestic and International Conflicts
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2015_015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.