IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1044.html
   My bibliography  Save this paper

Improving The Reliability Of Bootstrap Tests With The Fast Double Bootstrap

Author

Listed:
  • James G. MacKinnon

    (Queen's University)

  • Russell Davidson

    (McGill University)

Abstract

We first propose two procedures for estimating the rejection probabilities of bootstrap tests in Monte Carlo experiments without actually computing a bootstrap test for each replication. These procedures are only about twice as expensive (per replication) as estimating rejection probabilities forasymptotic tests. We then propose a new procedure for computing bootstrap P values that will often be more accurate than ordinary ones. This "fast double bootstrap" is closely related to the double bootstrap, but it is far less computationally demanding. Simulation results for three different cases suggest that this procedure can be very useful in practice.

Suggested Citation

  • James G. MacKinnon & Russell Davidson, 2006. "Improving The Reliability Of Bootstrap Tests With The Fast Double Bootstrap," Working Paper 1044, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1044
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1044.pdf
    File Function: First version 2006
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    2. Joon Y. Park, 2003. "Bootstrap Unit Root Tests," Econometrica, Econometric Society, vol. 71(6), pages 1845-1895, November.
    3. Jean-FranÁois Lamarche, 2004. "The Numerical Performance of Fast Bootstrap Procedures," Computational Economics, Springer;Society for Computational Economics, vol. 23(4), pages 379-389, June.
    4. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 35(4), pages 615-645, November.
    5. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    6. Davidson, Russell & MacKinnon, James G., 1984. "Convenient specification tests for logit and probit models," Journal of Econometrics, Elsevier, vol. 25(3), pages 241-262, July.
    7. Omtzigt Pieter & Fachin Stefano, 2002. "Bootstrapping and Bartlett corrections in the cointegrated VAR model," Economics and Quantitative Methods qf0212, Department of Economics, University of Insubria.
    8. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    9. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    10. James G. MacKinnon, 2006. "Applications Of The Fast Double Bootstrap," Working Paper 1023, Economics Department, Queen's University.
    11. Russell Davidson & James MacKinnon, 2002. "Fast Double Bootstrap Tests Of Nonnested Linear Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 419-429.
    12. Durbin, J, 1970. "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables," Econometrica, Econometric Society, vol. 38(3), pages 410-421, May.
    13. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    14. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
    15. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Davidson, James, 2006. "Alternative bootstrap procedures for testing cointegration in fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 741-777, August.
    18. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    19. Davidson, Russell & MacKinnon, James G., 2002. "Bootstrap J tests of nonnested linear regression models," Journal of Econometrics, Elsevier, vol. 109(1), pages 167-193, July.
    20. James G. MacKinnon & Russell Davidson, 2000. "Improving The Reliability Of Bootstrap Tests," Working Paper 995, Economics Department, Queen's University.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James G. MacKinnon, 2006. "Applications Of The Fast Double Bootstrap," Working Paper 1023, Economics Department, Queen's University.
    2. Davidson, Russell & Trokić, Mirza, 2020. "The fast iterated bootstrap," Journal of Econometrics, Elsevier, vol. 218(2), pages 451-475.
    3. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    4. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Paper 1127, Economics Department, Queen's University.
    5. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    6. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    7. Nikolay Gospodinov & Ye Tao, 2011. "Bootstrap Unit Root Tests in Models with GARCH(1,1) Errors," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 379-405, August.
    8. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    9. Godfrey, L.G. & Tremayne, A.R., 2005. "The wild bootstrap and heteroskedasticity-robust tests for serial correlation in dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 377-395, April.
    10. repec:wyi:journl:002087 is not listed on IDEAS
    11. Ou Bianling & Long Zhihe & Li Wenqian, 2019. "Bootstrap LM Tests for Spatial Dependence in Panel Data Models with Fixed Effects," Journal of Systems Science and Information, De Gruyter, vol. 7(4), pages 330-343, August.
    12. repec:lan:wpaper:2454 is not listed on IDEAS
    13. repec:lan:wpaper:2375 is not listed on IDEAS
    14. Trenkler, Carsten, 2009. "Bootstrapping Systems Cointegration Tests With A Prior Adjustment For Deterministic Terms," Econometric Theory, Cambridge University Press, vol. 25(1), pages 243-269, February.
    15. Davidson, Russell & MacKinnon, James G, 1988. "Double Length Artificial Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(2), pages 203-217, May.
    16. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    17. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    18. Rachida Ouysse, 2014. "On the performance of block-bootstrap continuously updated GMM for a class of non-linear conditional moment models," Computational Statistics, Springer, vol. 29(1), pages 233-261, February.
    19. Russell Davidson & James MacKinnon, 2002. "Fast Double Bootstrap Tests Of Nonnested Linear Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 419-429.
    20. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    21. repec:lan:wpaper:2596 is not listed on IDEAS
    22. repec:lan:wpaper:2373 is not listed on IDEAS
    23. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    24. Emma Iglesias & Jean Marie Dufour, 2004. "Finite Sample and Optimal Inference in Possibly Nonstationary ARCH Models with Gaussian and Heavy-Tailed Errors," Econometric Society 2004 North American Summer Meetings 161, Econometric Society.
    25. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.

    More about this item

    Keywords

    bootstrap test; double bootstrap; Monte Carlo experiment; rejection frequency;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.