IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/47852.html
   My bibliography  Save this paper

NIG-Levy process in asset price modeling: case of Estonian companies

Author

Listed:
  • Teneng, Dean

Abstract

As an asset is traded at fair value, its varying price trace an interesting trajectory reflecting in a general way the asset’s value and underlying economic activities. These trajectory exhibit jumps, clustering and a host of other properties not usually captured by Gaussian based models. Levy processes offer the possibility of distinguishing jumps, diffusion, drift and the laxity to answer questions on frequency, continuity, etc. An important feature of normal inverse Gaussian-Levy (NIGLevy) model is its path richness: it can model so many small jumps in a way that eliminates the need for a Gaussian component; hence, limitations arising from Gaussian based models are almost eliminated. Secondly, the characteristics listed above are reflected in the Levy triplet and are easily introduced in the modeling picture through estimated Levy parameters. Thirdly, knowledge of NIG-Levy parameters enables us to use NIG-Levy models as underlying asset price models for pricing financial derivatives. We use the R open software to calculate Levy parameters for 12 Estonian companies and choose good NIG-Levy asset price models by the method proposed by Käärik and Umbleja (2011). We observe that not all financial data of Estonian companies trading on the Tallinn Stock Exchange between 01 Jan 2008 – 01 Jan 2012 can be effectively modeled by NIG-Levy process, despite having Levy parameters. Those positively modeled are recommended as underlying assets for pricing financial derivatives.

Suggested Citation

  • Teneng, Dean, 2013. "NIG-Levy process in asset price modeling: case of Estonian companies," MPRA Paper 47852, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:47852
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/47852/1/MPRA_paper_47852.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edit Rroji & Lorenzo Mercuri, 2015. "Mixed tempered stable distribution," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1559-1569, September.
    2. Abootaleb Shirvani & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "Multiple Subordinated Modeling of Asset Returns," Papers 1907.12600, arXiv.org.
    3. Ivivi Joseph Mwaniki, 2019. "Modeling heteroscedastic, skewed and leptokurtic returns in discrete time," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(5), pages 1-1.
    4. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    6. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    7. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    8. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    9. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    10. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    11. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    12. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    13. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    14. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    15. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    16. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    17. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    18. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    19. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    20. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.

    More about this item

    Keywords

    NIG; goodness of fits test; fitting price process.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:47852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.