IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/30510.html
   My bibliography  Save this paper

A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns

Author

Listed:
  • Köksal, Bülent

Abstract

We compare more than 1000 different volatility models in terms of their fit to the historical ISE-100 Index data and their forecasting performance of the conditional variance in an out-of-sample setting. Exponential GARCH model of Nelson (1991) with “constant mean, t-distribution, one lag moving average term” specification achieves the best overall performance for modeling the ISE-100 return volatility. The t-distribution seems to characterize the distribution of the heavy tailed returns better than the Gaussian distribution or the generalized error distribution. In terms of forecasting performance, the best models are the ones that can accommodate a leverage effect. Results from fitting the selected exponential GARCH model to the historical ISE-100 return data indicates that the return volatility reacts to bad news 24% more than they react to good news as a result of a one standard deviation shock to the returns. As the magnitude of shock increases, the asymmetry becomes larger.

Suggested Citation

  • Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:30510
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/30510/1/MPRA_paper_30510.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    2. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    6. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
    7. Fatih Ozatay & Guven Sak, 2003. "Banking Sector Fragility and Turkey�s 2000�01 Financial Crisis," Working Papers 0308, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    9. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    11. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    12. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    13. Turhan, Ibrahim M., 2008. "Why did it work this time: a comparative analysis of transformation of Turkish economy after 2002," MPRA Paper 31158, University Library of Munich, Germany.
    14. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    15. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    16. Engle, Robert F, 1990. "Stock Volatility and the Crash of '87: Discussion," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 103-106.
    17. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    18. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Eliette Dury & Bing Xiao, 2018. "Forecasting the Volatility of the Chinese Gold Market by ARCH Family Models and extension to Stable Models," Working Papers hal-01709321, HAL.
    2. Bülent Köksal & Ahmet Çalışkan, 2012. "Political Business Cycles and Partisan Politics: Evidence from a Developing Economy," Economics and Politics, Wiley Blackwell, vol. 24(2), pages 182-199, July.
    3. Hossain, Md. Jamal & Akter, Sadia & Ismail, Mohd Tahir, 2021. "Performance Analysis of GARCH Family Models in Three Time-frames," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 55(2), pages 15-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
    2. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    3. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    4. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    5. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    6. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    7. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    8. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.
    9. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    10. Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
    11. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," Post-Print hal-01943883, HAL.
    14. repec:hal:wpaper:hal-01943883 is not listed on IDEAS
    15. Hossain, Md. Jamal & Akter, Sadia & Ismail, Mohd Tahir, 2021. "Performance Analysis of GARCH Family Models in Three Time-frames," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 55(2), pages 15-28.
    16. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    17. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    18. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
    19. Peter Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models:The Model Confidence Set Approach," Working Papers 2003-05, Brown University, Department of Economics.
    20. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    21. Turgut Kısınbay, 2010. "Predictive ability of asymmetric volatility models at medium-term horizons," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3813-3829.

    More about this item

    Keywords

    GARCH; Volatility Models; Istanbul Stock Exchange; ISE-100;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.