Advanced Search
MyIDEAS: Login

State dependence in work-related training participation among British employees: A comparison of different random effects probit estimators

Contents:

Author Info

  • Panos, Sousounis
Registered author(s):

    Abstract

    This paper compares three different estimation approaches for the random effects dynamic panel data model, under the probit assumption on the distribution of the errors. These three approaches are attributed to Heckman (1981), Wooldridge (2005) and Orme (2001). The results are then compared with those obtained from generalised method of moments (GMM) estimators of a dynamic linear probability model, namely the Arellano and Bond (1991) and Blundell and Bond (1998) estimators. A model of work-related training participation for British employees is estimated using individual level data covering the period 1991-1997 from the British Household Panel Survey. This evaluation adds to the existing body of empirical evidence on the performance of these estimators using real data, which supplements the conclusions from simulation studies. The results suggest that for the dynamic random effects probit model the performance of no one estimator is superior to the others. GMM estimation of a dynamic LPM of training participation suggests that the random effects estimators are not sensitive to the distributional assumptions of the unobserved effect.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://mpra.ub.uni-muenchen.de/14261/
    File Function: original version
    Download Restriction: no

    Bibliographic Info

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 14261.

    as in new window
    Length:
    Date of creation: Jul 2008
    Date of revision: Mar 2009
    Handle: RePEc:pra:mprapa:14261

    Contact details of provider:
    Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page: http://mpra.ub.uni-muenchen.de
    More information through EDIRC

    Related research

    Keywords: state dependence; training; dynamic panel data models;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Douglas Holtz-Eakin & Whitney K. Newey & Harvey S. Rosen, 1989. "Implementing Causality Tests with Panel Data, with an Example from LocalPublic Finance," NBER Technical Working Papers 0048, National Bureau of Economic Research, Inc.
    2. Arellano, Manuel & Honore, Bo, 2001. "Panel data models: some recent developments," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296 Elsevier.
    3. Avery, Robert B & Hansen, Lars Peter & Hotz, V Joseph, 1983. "Multiperiod Probit Models and Orthogonality Condition Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(1), pages 21-35, February.
    4. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    5. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    6. Richard Blundell & Steve Bond, 1995. "Initial conditions and moment restrictions in dynamic panel data models," IFS Working Papers W95/17, Institute for Fiscal Studies.
    7. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
    8. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    9. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    10. Arulampalam, W., 1998. "A Note on Estimated Coefficients in Random Effects Probit Models," The Warwick Economics Research Paper Series (TWERPS) 520, University of Warwick, Department of Economics.
    11. Arellano, Manuel & Bond, Stephen, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Wiley Blackwell, vol. 58(2), pages 277-97, April.
    12. repec:wop:humbsf:1995-67 is not listed on IDEAS
    13. J. Breitung & M. Lechner, 1995. "GMM-Estimation of Nonlinear Models on Panel Data," SFB 373 Discussion Papers 1995,67, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Wooldridge, Jeffrey M., 1995. "Selection corrections for panel data models under conditional mean independence assumptions," Journal of Econometrics, Elsevier, vol. 68(1), pages 115-132, July.
    15. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318 Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:14261. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.