IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/2004-fe-20.html
   My bibliography  Save this paper

Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise

Author

Listed:
  • Neil Shephard

Abstract

We consider kernel-based estimators of integrated variances in the presence of independent market microstructure effects. We derive the bias and variance properties for all regular kernel-based estimators and derive a lower bound for their asymptotic variance. Further we show that the subsample-based estimator is closely related to a Bartlett-type kernel estimator. The small difference between the two estimators due to end effects, turns out to be key for the consistency of the subsampling estimator. This observation leads us to a modified class of kernel-based estimators, which are also consistent. We study the efficiency of our new kernel-based procedure. We show that optimal modified kernel-based estimator converges to the integrated variance at rate m1/4, where m is the number of intraday returns.

Suggested Citation

  • Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," Economics Series Working Papers 2004-FE-20, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:2004-fe-20
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:2c604280-468f-492e-a67e-7549e6db40f4
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neil Shephard & Ole E. Barndorff-Nielsen & Department of Mathematical Sciences & University of Aarhus & Denmark, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Series Working Papers 240, University of Oxford, Department of Economics.
    2. Neil Shephard & Ole E. Barndorff-Nielsen & Department of Mathematical Sciences & University of Aarhus, 2004. "Multipower Variation and Stochastic Volatility," Economics Series Working Papers 2004-FE-22, University of Oxford, Department of Economics.
    3. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    4. Masato Ubukata & Toshiaki Watanabe, 2011. "Pricing Nikkei 225 Options Using Realized Volatility," IMES Discussion Paper Series 11-E-18, Institute for Monetary and Economic Studies, Bank of Japan.
    5. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    6. Zhang, Lan & Mykland, Per A. & Aït-Sahalia, Yacine, 2011. "Edgeworth expansions for realized volatility and related estimators," Journal of Econometrics, Elsevier, vol. 160(1), pages 190-203, January.
    7. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    8. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    9. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    10. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    11. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    12. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," OFRC Working Papers Series 2005fe05, Oxford Financial Research Centre.
    13. Borus Jungbacker & Siem Jan Koopman, 2006. "Model-Based Measurement of Actual Volatility in High-Frequency Data," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 183-210, Emerald Group Publishing Limited.
    14. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
    15. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    16. Barndorff-Nielsen, Ole E. & Shephard, Neil & Winkel, Matthias, 2006. "Limit theorems for multipower variation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 796-806, May.
    17. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    18. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    19. Benlagha, Noureddine & Chargui, Sana, 2017. "Range-based and GARCH volatility estimation: Evidence from the French asset market," Global Finance Journal, Elsevier, vol. 32(C), pages 149-165.
    20. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    21. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    22. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    23. M. Fukasawa & I. Ishida & N. Maghrebi & K. Oya & M. Ubukata & K. Yamazaki, 2011. "Model-Free Implied Volatility: From Surface To Index," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 433-463.

    More about this item

    Keywords

    Quadratic Variation; Market Microstructure Noise; Integrated Variance; Kernel-Based Realized Variance; Realized Variance; Realized Volatility;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:2004-fe-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.