Advanced Search
MyIDEAS: Login

Limit theorems for multipower variation in the presence of jumps

Contents:

Author Info

  • Neil Shephard
  • Matthias Winkel
  • Ole E. Barndorff-Nielsen

Abstract

In this paper we provide a systematic study of the robustness of probability limits and central limit theory for realised multipower variation when we add finite activity and infinite activity jump processes to an underlying Brownian semimartingale.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 2005-FE-06.

as in new window
Length:
Date of creation: 01 Jun 2005
Date of revision:
Handle: RePEc:oxf:wpaper:2005-fe-06

Contact details of provider:
Postal: Manor Rd. Building, Oxford, OX1 3UQ
Email:
Web page: http://www.economics.ox.ac.uk/
More information through EDIRC

Related research

Keywords: Bipower Variation; Infinite Activity; Multipower Variation; Power Variation; Quadratic Variation; Semimartingales; Stochastic Volatility;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  2. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variation ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
  3. Neil Shephard & Ole E. Barndorff-Nielsen, 2002. "Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics," Economics Series Working Papers 2002-FE-03, University of Oxford, Department of Economics.
  4. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  5. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," Economics Papers 2004-W28, Economics Group, Nuffield College, University of Oxford.
  6. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  7. Neil Shephard, 2005. "Stochastic volatility," Economics Series Working Papers 2005-W17, University of Oxford, Department of Economics.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:2005-fe-06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Caroline Wise).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.