IDEAS home Printed from https://ideas.repec.org/p/osf/eartha/qfj5g.html
   My bibliography  Save this paper

Seasonal impact-based mapping of compound hazards

Author

Listed:
  • Hillier, John
  • Dixon, Richard

Abstract

Impact-based, seasonal mapping of compound hazards is proposed. It is pragmatic, identifies phenomena to drive the research agenda, produces outputs relevant to stakeholders, and could be applied to many hazards globally. Illustratively, flooding and wind damage can co-occur, worsening their joint impact, yet where wet and windy seasons combine has not yet been systematically mapped. Here, seasonal proxies for wintertime flooding and wind damage are used to map, at 1x1° resolution, the association between these perils across Europe within 600 years as realized in SEAS5 hindcast data. Paired areas of enhanced-suppressed correlation are identified (Scotland, Norway), and are shown to be created by orographically-enhanced rainfall (or shelter) from prevailing westerly storms.

Suggested Citation

  • Hillier, John & Dixon, Richard, 2020. "Seasonal impact-based mapping of compound hazards," Earth Arxiv qfj5g, Center for Open Science.
  • Handle: RePEc:osf:eartha:qfj5g
    DOI: 10.31219/osf.io/qfj5g
    as

    Download full text from publisher

    File URL: https://osf.io/download/5ee7d12aa6b88000334b25de/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/qfj5g?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    2. John K. Hillier & Tom Matthews & Robert L. Wilby & Conor Murphy, 2020. "Multi-hazard dependencies can increase or decrease risk," Nature Climate Change, Nature, vol. 10(7), pages 595-598, July.
    3. Michael Hawker, 2007. "Climate Change and the Global Insurance Industry," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 32(1), pages 22-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    4. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    5. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    8. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    10. Valentina Gallina & Silvia Torresan & Alex Zabeo & Andrea Critto & Thomas Glade & Antonio Marcomini, 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones," Sustainability, MDPI, vol. 12(9), pages 1-28, May.
    11. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    12. Codjoe, Samuel N.A. & Gough, Katherine V. & Wilby, Robert L. & Kasei, Raymond & Yankson, Paul W.K. & Amankwaa, Ebenezer F. & Abarike, Mercy A. & Atiglo, D. Yaw & Kayaga, Sam & Mensah, Peter & Nabilse,, 2020. "Impact of extreme weather conditions on healthcare provision in urban Ghana," Social Science & Medicine, Elsevier, vol. 258(C).
    13. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    14. Arthur Moses & Jean E. T. McLain & Aminata Kilungo & Robert A. Root & Leif Abrell & Sanlyn Buxner & Flor Sandoval & Theresa Foley & Miriam Jones & Mónica D. Ramírez-Andreotta, 2022. "Minding the gap: socio-demographic factors linked to the perception of environmental pollution, water harvesting infrastructure, and gardening characteristics," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 594-610, September.
    15. Miriam Matejova & Chad M. Briggs, 2021. "Embracing the Darkness: Methods for Tackling Uncertainty and Complexity in Environmental Disaster Risks," Global Environmental Politics, MIT Press, vol. 21(1), pages 76-88, Winter.
    16. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Lusheng Li & Lili Zhao & Yanbin Li, 2023. "Spatiotemporal Characteristics of Meteorological and Agricultural Droughts in China: Change Patterns and Causes," Agriculture, MDPI, vol. 13(2), pages 1-16, January.
    20. Stefan Hochrainer-Stigler & Qinhan Zhu & Karina Reiter & Alessio Ciullo, 2023. "Challenges of instruments that should tackle multi-hazard and multi-risk situations: an assessment of the recent reforms of the European Solidarity Fund and the Solidarity and Emergency Aid Reserve," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(8), pages 1-16, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:eartha:qfj5g. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://eartharxiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.