Advanced Search
MyIDEAS: Login

A simple test for the equality of integration orders

Contents:

Author Info

Registered author(s):

    Abstract

    A necessary condition for two time series to be nontrivially cointegrated is the equality of their respective integration orders. Thus, it is standard practice to test for order homogeneity prior to testing for cointegration. Tests for the equality of integration orders are particular cases of more general tests of linear restrictions among memory parameters of different time series, for which asymptotic theory has been developed in parametric and semiparametric settings. However, most tests have been developed in stationary and invertible settings, and, more importantly, many of them are invalid when the observables are cointegrated, because they usually involve inversion of an asymptotically singular matrix. We propose a general testing procedure which does not suffer from this serious drawback, and, in addition, it is very simple to compute, it covers the stationary/nonstationary and invertible/noninvertible ranges, and, as we show in a Monte Carlo experiment, it works well in finite samples.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: ftp://ftp.econ.unavarra.es/pub/DocumentosTrab/DT1206.PDF
    Download Restriction: no

    Bibliographic Info

    Paper provided by Departamento de Economía - Universidad Pública de Navarra in its series Documentos de Trabajo - Lan Gaiak Departamento de Economía - Universidad Pública de Navarra with number 1206.

    as in new window
    Length:
    Date of creation: 2012
    Date of revision:
    Publication status: Published in
    Handle: RePEc:nav:ecupna:1206

    Contact details of provider:
    Postal: Campus de Arrosadía - 31006 Pamplona (Spain)
    Phone: 34 948 169340
    Fax: 34 948 169 721
    Web page: http://www.econ.unavarra.es

    Order Information:
    Postal: Papers are not sent in a centralized mode. You can download them with ftp, or contact the authors.

    Related research

    Keywords: integration orders; fractional differencing; fractional cointegration.;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    2. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    3. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    4. Peter M Robinson, 2004. "The Distance between Rival Nonstationary Fractional Processes," STICERD - Econometrics Paper Series /2004/468, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
    6. P. M. Robinson & J. Hualde, 2003. "Cointegration in Fractional Systems with Unknown Integration Orders," Econometrica, Econometric Society, vol. 71(6), pages 1727-1766, November.
    7. D Marinucci & Peter M. Robinson, 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:nav:ecupna:1206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Javier Puértolas).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.