Advanced Search
MyIDEAS: Login

Spline Regression in the Presence of Categorical Predictors

Contents:

Author Info

  • Shujie Ma
  • Jeffrey S. Racine
  • Lijian Yang

Abstract

We consider the problem of estimating a relationship nonparametrically using regression splines when there exist both continuous and categorical predictors. We combine the global properties of regression splines with the local properties of categorical kernel functions to handle the presence of categorical predictors rather than resorting to sample splitting as is typically done to accommodate their presence. The resulting estimator possesses substantially better nite-sample performance than either its frequency-based peer or cross-validated local linear kernel regression or even additive regression splines (when additivity does not hold). Theoretical underpinnings are provided and Monte Carlo simulations are undertaken to assess nite-sample behavior, and two illustrative applications are provided. An implementation in R (R Core Team (2012)) is available; see the R package 'crs' for details (Racine & Nie (2012)).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://socserv.mcmaster.ca/econ/rsrch/papers/archive/2012-06.pdf
Download Restriction: no

Bibliographic Info

Paper provided by McMaster University in its series Department of Economics Working Papers with number 2012-06.

as in new window
Length: 32 pages
Date of creation: Aug 2012
Date of revision:
Handle: RePEc:mcm:deptwp:2012-06

Contact details of provider:
Postal: 1280 Main Street West, Hamilton, Ontario, L8S 4M4
Phone: (905) 525-9140 ext. 22765
Fax: (905) 521-8232
Email:
Web page: http://www.economics.mcmaster.ca/
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
  2. Liu, Rong & Yang, Lijian, 2010. "Spline-Backfitted Kernel Smoothing Of Additive Coefficient Model," Econometric Theory, Cambridge University Press, vol. 26(01), pages 29-59, February.
  3. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Shujie Ma & Jeffrey S. Racine, 2012. "Additive Regression Splines With Irrelevant Categorical and Continuous Regressors," Department of Economics Working Papers 2012-07, McMaster University.
  2. Shintaro Yamaguchi, 2013. "Changes in Returns to Task-Specific Skills and Gender Wage Gap," Global COE Hi-Stat Discussion Paper Series gd12-275, Institute of Economic Research, Hitotsubashi University.
  3. Nicholas M. Kiefer & Jeffrey S. Racine, 2013. "The Smooth Colonel and the Reverend Find Common Ground," Department of Economics Working Papers 2013-03, McMaster University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mcm:deptwp:2012-06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.