IDEAS home Printed from https://ideas.repec.org/p/mar/magkse/202246.html
   My bibliography  Save this paper

The Choice of GARCH Models to Forecast Value-at-Risk for Currencies (Euro Exchange Rates), Crypto Assets (Bitcoin and Ethereum), Gold, Silver and Crude Oil: Automated Processes, Statistical Distribution Models and the Specification of the Mean Equationn

Author

Listed:
  • Andreas Marcus Gohs

    (University of Kassel)

Abstract

Regular or automated processes require reliable software applications that provide accurate volatility and Value-at-Risk forecasts. The univariate and multivariate GARCH models proposed in the literature are reviewed and the suitability of selected R functions for automated forecasting systems is discussed. With the Markov-switching GARCH function constructed for modelling regime changes, parameter estimates are reliably obtained in studies with moving time windows. In contrast, in the case of structural breaks or outliers, the algorithm of the ordinary GARCH function often does not return valid parameter estimates and fails. VaR prognoses are produced for extreme quantiles (up to 99.9%) and three alternative distribution assumptions (Skew Student-T, Student-T and Gaussian). Accurate one-day-ahead VaR predictions up to the 99% quantile are generally obtained for the time series when Skew Student-T distributed innovations are assumed. The VaR exceedance rates and their percentage deviations from the target alpha as well as the mean and median excess loss are reported. The accompanying mean equation is often omitted when fitting GARCH models to heteroskedastic time series. The impact of this on the accuracy of VaR forecasts is investigated. Coefficients of the ordinary (Pearson) and the default correlation are calculated for moving time windows. Since the calculated default correlation depends on the VaR forecasts, analyses are performed for different quantiles, the ordinary and the MS-GARCH function and specifications of mean equations.

Suggested Citation

  • Andreas Marcus Gohs, 2022. "The Choice of GARCH Models to Forecast Value-at-Risk for Currencies (Euro Exchange Rates), Crypto Assets (Bitcoin and Ethereum), Gold, Silver and Crude Oil: Automated Processes, Statistical Distributi," MAGKS Papers on Economics 202246, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
  • Handle: RePEc:mar:magkse:202246
    as

    Download full text from publisher

    File URL: https://www.uni-marburg.de/en/fb02/research-groups/economics/macroeconomics/research/magks-joint-discussion-papers-in-economics/papers/2022-papers/46-2022_gohs.pdf
    File Function: First 202246
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    3. Trottier, Denis-Alexandre & Ardia, David, 2016. "Moments of standardized Fernandez–Steel skewed distributions: Applications to the estimation of GARCH-type models," Finance Research Letters, Elsevier, vol. 18(C), pages 311-316.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    6. Ghulam Ali, 2013. "EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH Models for Pathogens at Marine Recreational Sites," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 2(3), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    2. Makushkin, Mikhail & Lapshin, Victor, 2020. "Modelling tail dependencies between Russian and foreign stock markets: Application for market risk valuation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 30-52.
    3. Storti, Giuseppe & Wang, Chao, 2022. "A multivariate semi-parametric portfolio risk optimization and forecasting framework," MPRA Paper 115266, University Library of Munich, Germany.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    5. Sotirios Bersimis & Stavros Degiannakis & Dimitrios Georgakellos, 2017. "Real-time monitoring of carbon monoxide using value-at-risk measure and control charting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 89-108, January.
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Bauwens, Luc & Ben Omrane, Walid & Rengifo, Erick, 2010. "Intradaily dynamic portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2400-2418, November.
    10. Giuseppe Storti & Chao Wang, 2022. "A multivariate semi-parametric portfolio risk optimization and forecasting framework," Papers 2207.04595, arXiv.org, revised Feb 2023.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    12. Su, Jung-Bin, 2015. "Value-at-risk estimates of the stock indices in developed and emerging markets including the spillover effects of currency market," Economic Modelling, Elsevier, vol. 46(C), pages 204-224.
    13. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    14. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    15. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    16. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    17. Miguel A. Ferreira, 2005. "Evaluating Interest Rate Covariance Models Within a Value-at-Risk Framework," Journal of Financial Econometrics, Oxford University Press, vol. 3(1), pages 126-168.
    18. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    19. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    20. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.

    More about this item

    Keywords

    Conditional volatility; Skew Student T; Markov Switching MS-GARCH; Multivariate GARCH; Mean Excess Loss; Default Correlation; Software R;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G01 - Financial Economics - - General - - - Financial Crises
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mar:magkse:202246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernd Hayo (email available below). General contact details of provider: https://edirc.repec.org/data/vamarde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.