IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/1201.html
   My bibliography  Save this paper

Solving Elementary Shortest-Path Problems as Mixed-Integer Programs

Author

Listed:
  • Michael Drexl

    (Johannes Gutenberg University Mainz)

  • Stefan Irnich

    (Johannes Gutenberg University Mainz)

Abstract

Ibrahim, Maculan, and Minoux (International Transactions in Operational Research, vol. 16, 2009, pp. 361-369) presented and analyzed two integer programming formulations for the elementary shortest-path problem (ESPP), which is known to be NP-hard if the underlying digraph contains negative cycles. In fact, the authors showed that a formulation based on commodity flows possesses a significantly stronger LP-relaxation than a formulation based on arc flow variables. Since the ESPP is essentially an integer problem, the contribution of our paper lies in extending this research by comparing the formulations with regard to the computation time and memory requirements required for their integer solution. Moreover, we assess the quality of the lower bounds provided by an integer relaxation of the commodity flow formulation.

Suggested Citation

  • Michael Drexl & Stefan Irnich, 2012. "Solving Elementary Shortest-Path Problems as Mixed-Integer Programs," Working Papers 1201, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:1201
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_1201.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), 2005. "Column Generation," Springer Books, Springer, number 978-0-387-25486-9, December.
    2. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    3. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Hintsch & Stefan Irnich, 2018. "Exact Solution of the Soft-Clustered Vehicle Routing Problem," Working Papers 1813, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Range, Troels Martin, 2013. "Exploiting Set-Based Structures to Accelerate Dynamic Programming Algorithms for the Elementary Shortest Path Problem with Resource Constraints," Discussion Papers on Economics 17/2013, University of Southern Denmark, Department of Economics.
    3. Quoc Trung Bui & Yves Deville & Quang Dung Pham, 2016. "Exact methods for solving the elementary shortest and longest path problems," Annals of Operations Research, Springer, vol. 244(2), pages 313-348, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2015. "Branch-and-Price for the Active-Passive Vehicle-Routing Problem," Working Papers 1513, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Konrad Steiner & Stefan Irnich, 2018. "Strategic Planning for Integrated Mobility-on-Demand and Urban Public Bus Networks," Working Papers 1819, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Nicola Bianchessi & Stefan Irnich & Christian Tilk, 2020. "A Branch-Price-and-Cut Algorithm for the Capacitated Multiple Vehicle Traveling Purchaser Problem with Unitary Demand," Working Papers 2003, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    6. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    7. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2016. "Branch-and-Price-and-Cut for the Truck-andTrailer Routing Problem with Time Windows," Working Papers 1617, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Maximilian Schiffer & Grit Walther, 2018. "An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities," Transportation Science, INFORMS, vol. 52(2), pages 331-352, March.
    10. Christian Tilk & Katharina Olkis & Stefan Irnich, 2020. "The Last-mile Vehicle Routing Problem with Delivery Options," Working Papers 2017, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Christian Tilk & Michael Drexl & Stefan Irnich, 2018. "Nested Branch-and-Price-and-Cut for Vehicle Routing Problems with Multiple Resource Interdependencies," Working Papers 1801, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    13. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    14. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    15. Bode, Claudia & Irnich, Stefan, 2014. "The shortest-path problem with resource constraints with (k,2)-loop elimination and its application to the capacitated arc-routing problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 415-426.
    16. Daniele Crotti & Elena Maggi, 2023. "Social Responsibility and Urban Consolidation Centres in Sustainable Freight Transport Markets," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(2), pages 829-850, July.
    17. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    18. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    20. Abhishek, & Legros, Benjamin & Fransoo, Jan C., 2021. "Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking," Other publications TiSEM 09ed9572-d59c-4f28-a9c4-b, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:1201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.