IDEAS home Printed from https://ideas.repec.org/p/iwt/conppr/h042863.html
   My bibliography  Save this paper

Observed and projected climatic changes, their impacts and adaptation options for Sri Lanka: a review

Author

Listed:
  • Eriyagama, Nishadi
  • Smakhtin, Vladimir

Abstract

Climate is changing world-wide, and the science community in Sri Lanka has come up with ample evidence to suggest that the country’s climate has already changed. During 1961-1990 the country’s mean air temperature increased by 0.016 0C per year, and the mean annual rainfall decreased by 144 mm (7 %) compared to the period 1931-1960. In addition, mean annual daytime maximum and mean annual night-time minimum air temperatures increased. However, the bigger question of national importance is what Sri Lanka’s climate will look like in 50 or 100 years and how prepared is the country to face it. Apart from the Intergovernmental Panel on Climate Change (IPCC) projections at the coarse global scale, few studies have attempted to project future climate scenarios for Sri Lanka and to identify climate change impacts on agriculture, water resources, the sea level, the plantation sector, the economy and health. Vulnerability and adaptation to climate change are the least studied areas. This paper reviews the status of climate change research and activities in Sri Lanka with respect to future climate projections, impacts, climate change mitigation and the country’s ability to adapt, and identifies existing knowledge gaps. Messages emerging from this review suggest that Sri Lanka’s mean temperature during the North-East (December-February) and South-West (May-September) monsoon seasons will increase by about 2.9 0C and 2.5 0C, respectively, over the baseline (1961-1990), by the year 2100 with accompanying changes in the quantity and spatial distribution of rainfall. Extreme climate events are expected to increase in frequency. These changes will bring about widespread impacts on the country’s agriculture and economy For example, an increase of 0.5 0C in temperature can reduce rice yield by approximately 6%; extended dry spells and excessive cloudiness during the wet season can reduce coconut yield resulting in annual losses between $32 and $73 million to the economy. Pilot studies in the Galle District suggest that sea level rise could inundate about 20 % of the land area of Galle’s coastal District Secretariat Divisions. Adaptation measures already undertaken in the agriculture sector include the development of low water consuming rice varieties and the use of micro-irrigation technologies. Tools have been developed for predicting seasonal water availability within the Mahaweli Scheme and annual national coconut production. However, Sri Lanka is yet to undertake a comprehensive national study on the vulnerability of her water resources and agriculture to climate change. The formulation of detailed and reliable future climate scenarios for the country is therefore, urgently required.Length: pp.99-117

Suggested Citation

  • Eriyagama, Nishadi & Smakhtin, Vladimir, 2010. "Observed and projected climatic changes, their impacts and adaptation options for Sri Lanka: a review," Conference Papers h042863, International Water Management Institute.
  • Handle: RePEc:iwt:conppr:h042863
    as

    Download full text from publisher

    File URL: https://publications.iwmi.org/pdf/H042863.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. International Water Management Institute (IWMI), 2005. "Planning groundwater use for sustainable rural development," IWMI Water Policy Briefings 113019, International Water Management Institute.
    2. De Silva, C.S. & Weatherhead, E.K. & Knox, J.W. & Rodriguez-Diaz, J.A., 2007. "Predicting the impacts of climate change--A case study of paddy irrigation water requirements in Sri Lanka," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 19-29, October.
    3. International Water Management Institute (IWMI)., 2005. "Planning groundwater use for sustainable rural development," IWMI Water Policy Briefings H037858, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sujith S. Ratnayake & Michael Reid & Nicolette Larder & Harsha K. Kadupitiya & Danny Hunter & Punchi B. Dharmasena & Lalit Kumar & Benjamin Kogo & Keminda Herath & Champika S. Kariyawasam, 2023. "Impact of Climate Change on Paddy Farming in the Village Tank Cascade Systems of Sri Lanka," Sustainability, MDPI, vol. 15(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eriyagama, Nishadi & Smakhtin, Vladimir U. & Chandrapala, Lalith & Fernando, Karin, 2010. "Impacts of climate change on water resources and agriculture in Sri Lanka: a review and preliminary vulnerability mapping," IWMI Research Reports 94787, International Water Management Institute.
    2. Nanayakkara, V. K., 2010. "Sri Lanka’s water policy: themes and issues," Conference Papers h042809, International Water Management Institute.
    3. Tamiru Lemi & Fekadu Hailu, 2019. "Effects of Climate Change Variability on Agricultural Productivity," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 17(1), pages 14-20, February.
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    6. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    7. Eriyagama, Nishadi & Smakhtin, Vladimir, 2010. "Observed and projected climatic changes, their impacts and adaptation options for Sri Lanka: a review," IWMI Conference Proceedings 211313, International Water Management Institute.
    8. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    9. Lanie A. Alejo & Victor B. Ella & Rubenito M. Lampayan & Aurelio A. Delos Reyes, 2021. "Assessing the impacts of climate change on irrigation diversion water requirement in the Philippines," Climatic Change, Springer, vol. 165(3), pages 1-17, April.
    10. Karen Villholth & Lorraine Rajasooriyar, 2010. "Groundwater Resources and Management Challenges in Sri Lanka–an Overview," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1489-1513, June.
    11. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    12. Rey, D. & Holman, I.P. & Daccache, A. & Morris, J. & Weatherhead, E.K. & Knox, J.W., 2016. "Modelling and mapping the economic value of supplemental irrigation in a humid climate," Agricultural Water Management, Elsevier, vol. 173(C), pages 13-22.
    13. Seung-Hwan, Yoo & Jin-Yong, Choi & Sang-Hyun, Lee & Yun-Gyeong, Oh & Dong Koun, Yun, 2013. "Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea," Agricultural Water Management, Elsevier, vol. 117(C), pages 43-54.
    14. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    15. Han, Huanhao & Cui, Yuanlai & Huang, Ying & Wang, Shupeng & Duan, Qicai & Zhang, Lei, 2019. "Impacts of the channel/barrier effect and three-dimensional climate—A case study of rice water requirement and irrigation quota in Yunnan, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 317-327.
    16. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    17. Rowshon, M.K. & Dlamini, N.S. & Mojid, M.A. & Adib, M.N.M. & Amin, M.S.M. & Lai, S.H., 2019. "Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme," Agricultural Water Management, Elsevier, vol. 216(C), pages 138-152.
    18. Knox, J.W. & Rodríguez Díaz, J.A. & Nixon, D.J. & Mkhwanazi, M., 2010. "A preliminary assessment of climate change impacts on sugarcane in Swaziland," Agricultural Systems, Elsevier, vol. 103(2), pages 63-72, February.
    19. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    20. Mohamed Esham & Brent Jacobs & Hewage Sunith Rohitha Rosairo & Balde Boubacar Siddighi, 2018. "Climate change and food security: a Sri Lankan perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1017-1036, June.

    More about this item

    Keywords

    Climate change;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:conppr:h042863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.