Advanced Search
MyIDEAS: Login to save this paper or follow this series

Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications

Contents:

Author Info

  • Hannah Frick

    ()

  • Carolin Strobl

    ()

  • Achim Zeileis

    ()

Abstract

Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest DIF tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive to the specification of the ability distribution even when the conditional maximum likelihood approach is used. It is demonstrated in a simulation study how differences in ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF detection, it is not of interest to uncover such ability differences as one is only interested in a latent group structure regarding the item difficulties. To avoid any confounding effect of ability differences (or impact), a score distribution for the Rasch mixture model is introduced here which is restricted to be equal across latent classes. This causes the estimation of the Rasch mixture model to be independent of the ability distribution and thus restricts the mixture to be sensitive to latent structure in the item difficulties only. Its usefulness is demonstrated in a simulation study and its application is illustrated in a study of verbal aggression.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://eeecon.uibk.ac.at/wopec2/repec/inn/wpaper/2013-36.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Faculty of Economics and Statistics, University of Innsbruck in its series Working Papers with number 2013-36.

as in new window
Length: 29
Date of creation: Dec 2013
Date of revision:
Handle: RePEc:inn:wpaper:2013-36

Contact details of provider:
Postal: Universit├Ątsstra├če 15, A - 6020 Innsbruck
Phone: 0512/507-7151
Fax: 0512/507-2788
Email:
Web page: http://www.uibk.ac.at/fakultaeten/volkswirtschaft_und_statistik/index.html.en
More information through EDIRC

Related research

Keywords: mixed Rasch model; Rasch mixture model; DIF detection; score distribution;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer, Springer, vol. 43(4), pages 561-573, December.
  2. Hannah Frick & Carolin Strobl & Friedrich Leisch & Achim Zeileis, 2011. "Flexible Rasch Mixture Models with Package psychomix," Working Papers, Faculty of Economics and Statistics, University of Innsbruck 2011-21, Faculty of Economics and Statistics, University of Innsbruck.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2013-36. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janette Walde).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.