IDEAS home Printed from https://ideas.repec.org/p/iim/iimawp/wp00001.html
   My bibliography  Save this paper

Neighborhood Search Heuristicsfor the Uncapacitated Facility Location Problem

Author

Listed:
  • Ghosh, Diptesh

Abstract

The uncapacitated facility location problem is one of choosing sites among a set of candidates in which facilities can be located, so that the demands of a given set of clients are satisfied at minimum costs. Applications of neighborhood search methods to this problem have not been reported in the literature. In this paper we first describe and compare several neighborhood structures used by local search to solve this problem. We then describe neighborhood search heuristics based on tabu search and complete local search with memory to solve large instances of the uncapacitated facility location problem. Our computational experiments show that on medium sized problem instances, both these heuristics return solutions with costs within 0.075% of the optimal with execution times that are often several orders of magnitude less than those required by exact algorithms. On large sized instances, the heuristics generate low cost solutions quite fast, and terminate with solutions whose costs are within 0.0345% of each other.

Suggested Citation

  • Ghosh, Diptesh, 2002. "Neighborhood Search Heuristicsfor the Uncapacitated Facility Location Problem," IIMA Working Papers WP2002-01-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  • Handle: RePEc:iim:iimawp:wp00001
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. K.S. Al‐Sultan & M.A. Al‐Fawzan, 1999. "A tabu search approach to the uncapacitated facility location problem," Annals of Operations Research, Springer, vol. 86(0), pages 91-103, January.
    2. Charles S. Revelle & Gilbert Laporte, 1996. "The Plant Location Problem: New Models and Research Prospects," Operations Research, INFORMS, vol. 44(6), pages 864-874, December.
    3. Donald Erlenkotter, 1978. "A Dual-Based Procedure for Uncapacitated Facility Location," Operations Research, INFORMS, vol. 26(6), pages 992-1009, December.
    4. David W. Pentico, 1976. "The Assortment Problem with Nonlinear Cost Functions," Operations Research, INFORMS, vol. 24(6), pages 1129-1142, December.
    5. David W. Pentico, 1988. "The Discrete Two-Dimensional Assortment Problem," Operations Research, INFORMS, vol. 36(2), pages 324-332, April.
    6. Labbe, M & Louveaux, F, 1997. "Annotated Bibliography on Location Problems," Papers 183, Notre-Dame de la Paix, Sciences Economiques et Sociales.
    7. Tuzun, Dilek & Burke, Laura I., 1999. "A two-phase tabu search approach to the location routing problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 87-99, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    2. Ghosh, Diptesh & Sierksma, Gerard & Goldengorin, Boris & AlMohammad, Bader F., 2000. "Equivalent instances of the simple plant location problem," Research Report 00A54, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    3. repec:dgr:rugsom:00a54 is not listed on IDEAS
    4. Dupont, Lionel, 2008. "Branch and bound algorithm for a facility location problem with concave site dependent costs," International Journal of Production Economics, Elsevier, vol. 112(1), pages 245-254, March.
    5. F J Vasko & D D Newhart & K L Stott & F E Wolf, 2003. "A large-scale application of the partial coverage uncapacitated facility location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 11-20, January.
    6. Yücel, Eda & Karaesmen, Fikri & Salman, F. Sibel & Türkay, Metin, 2009. "Optimizing product assortment under customer-driven demand substitution," European Journal of Operational Research, Elsevier, vol. 199(3), pages 759-768, December.
    7. Shin, Hojung & Park, Soohoon & Lee, Euncheol & Benton, W.C., 2015. "A classification of the literature on the planning of substitutable products," European Journal of Operational Research, Elsevier, vol. 246(3), pages 686-699.
    8. Wang, Shaojun & Sarker, Bhaba R. & Mann, Lawrence & Triantaphyllou, Evangelos, 2004. "Resource planning and a depot location model for electric power restoration," European Journal of Operational Research, Elsevier, vol. 155(1), pages 22-43, May.
    9. Drexl, M. & Schneider, M., 2014. "A Survey of the Standard Location-Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65940, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Mina Husseinzadeh Kashan & Ali Husseinzadeh Kashan & Nasim Nahavandi, 2013. "A novel differential evolution algorithm for binary optimization," Computational Optimization and Applications, Springer, vol. 55(2), pages 481-513, June.
    11. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    12. Ahn, Jaemyung & de Weck, Olivier & Geng, Yue & Klabjan, Diego, 2012. "Column generation based heuristics for a generalized location routing problem with profits arising in space exploration," European Journal of Operational Research, Elsevier, vol. 223(1), pages 47-59.
    13. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    14. Fathali Firoozi, 2008. "Boundary Distributions in Testing Inequality Hypotheses," Working Papers 0046, College of Business, University of Texas at San Antonio.
    15. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    17. Stephen A. Smith & Narendra Agrawal, 2000. "Management of Multi-Item Retail Inventory Systems with Demand Substitution," Operations Research, INFORMS, vol. 48(1), pages 50-64, February.
    18. Martínez-Salazar, Iris Abril & Molina, Julian & Ángel-Bello, Francisco & Gómez, Trinidad & Caballero, Rafael, 2014. "Solving a bi-objective Transportation Location Routing Problem by metaheuristic algorithms," European Journal of Operational Research, Elsevier, vol. 234(1), pages 25-36.
    19. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    20. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.
    21. Dorothée Honhon & Vishal Gaur & Sridhar Seshadri, 2010. "Assortment Planning and Inventory Decisions Under Stockout-Based Substitution," Operations Research, INFORMS, vol. 58(5), pages 1364-1379, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:wp00001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.