IDEAS home Printed from https://ideas.repec.org/p/hhs/vtiwps/2022_006.html
   My bibliography  Save this paper

Economics of shore power for non-liner shipping : socioeconomic appraisal under different access pricing

Author

Listed:
  • Merkel, Axel

    (Swedish National Road & Transport Research Institute (VTI))

  • Nyberg, Erik

    (Swedish National Road & Transport Research Institute (VTI))

  • Ek, Karin

    (Swedish National Road & Transport Research Institute (VTI))

  • Sjöstrand, Henrik

    (Swedish National Road & Transport Research Institute (VTI))

Abstract

The provision of shore power to ships at berth is recognized as an effective measure to reduce the external costs of maritime transport. However, the deployment and uptake of shore power technology is subject to barriers, part of which have to do with insufficient economic incentives for providers and users. Regulatory proposals in the EU have targeted liner shipping segments to be covered by a shore power mandate. There is much less discussion and research focused on other segments of shipping, though these represent a significant share of at-berth emissions. This study uses maritime traffic data and a relatively simple modelling framework to analyse whether public investments in shore power deployment, coupled with added incentives to shipowners, could be socio-economically beneficial. The analysis is focused on maritime traffic in the Swedish port network, but the main findings can likely be generalized beyond this context. We find that investing in (or mandating) the provision of shore power in ports can be socio-economically beneficial also when aimed at segments typically classified as non-liner (or “tramp”). The results do not however indicate that network-wide deployment of shore power is justifiable, but rather that care must be taken to determine the cost-efficient size of the network as well as to design the network of shore power deployment in ports so as to reap benefits of network effects. We also find that the pricing of shore power access has a major impact on expected uptake and consequently on whether or not shore power investments yield benefits in proportion to costs. Crucially, we find that unregulated profit-maximizing pricing by ports leads to significant welfare losses by suppressing take-up among shipowners.

Suggested Citation

  • Merkel, Axel & Nyberg, Erik & Ek, Karin & Sjöstrand, Henrik, 2022. "Economics of shore power for non-liner shipping : socioeconomic appraisal under different access pricing," Working Papers 2022:6, Swedish National Road & Transport Research Institute (VTI).
  • Handle: RePEc:hhs:vtiwps:2022_006
    as

    Download full text from publisher

    File URL: https://www.transportportal.se/VTISWoPEc/VTI%202022%206.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stolz, B. & Held, M. & Georges, G. & Boulouchos, K., 2021. "The CO2 reduction potential of shore-side electricity in Europe," Applied Energy, Elsevier, vol. 285(C).
    2. Wu, Lingxiao & Wang, Shuaian, 2020. "The shore power deployment problem for maritime transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merkel, Axel & Nyberg, Erik & Ek, Karin & Sjöstrand, Henrik, 2023. "Economics of shore power under different access pricing," Research in Transportation Economics, Elsevier, vol. 101(C).
    2. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    3. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    4. Zhang, Xue & Li, Fanghua & Wang, Jiahong & Zhao, Haitao & Yu, Xue-Feng, 2021. "Strategy for improving the activity and selectivity of CO2 electroreduction on flexible carbon materials for carbon neutral," Applied Energy, Elsevier, vol. 298(C).
    5. Wang, Jinggai & Zhong, Meisu & Wang, Tianni & Ge, Ying-En, 2023. "Identifying industry-related opinions on shore power from a survey in China," Transport Policy, Elsevier, vol. 134(C), pages 65-81.
    6. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    7. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing & Zhang, Guoqing, 2022. "Implications of government subsidies on shipping companies’ shore power usage strategies in port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    8. Wang, Shuaian & Qi, Jingwen & Laporte, Gilbert, 2022. "Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 304-321.
    9. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    10. Zhen, Lu & Wang, Wencheng & Lin, Shumin, 2022. "Analytical comparison on two incentive policies for shore power equipped ships in berthing activities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    12. Hanyu Lu & Lufei Huang, 2021. "Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    13. Jon Williamsson & Nicole Costa & Vendela Santén & Sara Rogerson, 2022. "Barriers and Drivers to the Implementation of Onshore Power Supply—A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    14. Chuanxu Wang & Lingli Wang, 2023. "Green investment and vertical alliances in the maritime supply chain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6657-6687, July.
    15. Abu Bakar, Nur Najihah & Bazmohammadi, Najmeh & Vasquez, Juan C. & Guerrero, Josep M., 2023. "Electrification of onshore power systems in maritime transportation towards decarbonization of ports: A review of the cold ironing technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Yang He & Yun Zhu, 2023. "Comprehensive Benefit Analysis of Port Shore Power Based on Carbon Trading," Energies, MDPI, vol. 16(6), pages 1-19, March.
    17. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Promoting Liquefied Natural Gas (LNG) Bunkering for Maritime Transportation: Should Ports or Ships Be Subsidized?," Sustainability, MDPI, vol. 14(11), pages 1-16, May.

    More about this item

    Keywords

    Shore power; On-shore power supply; Infrastructure pricing; Cost-benefit analysis; CO2 emission reduction;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:vtiwps:2022_006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteket vid VTI or Emil Svensson or Claes Eriksson or Tova Äng (email available below). General contact details of provider: https://edirc.repec.org/data/tevtise.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.