IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02998527.html
   My bibliography  Save this paper

Conséquences du changement climatique sur la pollution de l'air et impact en assurance de personnes

Author

Listed:
  • Yannick Drif
  • Palmira Messina²

    (CEREA - Centre d'Enseignement et de Recherche en Environnement Atmosphérique - ENPC - École des Ponts ParisTech - EDF R&D - EDF R&D - EDF - EDF)

  • Pierre Valade

Abstract

Air pollution is the co-occurrence of high pollutant emissions and particular meteorological conditions. Among its pollutants, fine particles (PM2.5 and PM10), Nitrogen Oxide (NOx) and Ozone (O3) are the most dangerous for public health. Every year, repeated or prolonged exposure to these particles leads to respiratory and cardiovascular diseases, cancer and premature death in those exposed. Climate change has an impact on meteorological variables (temperature, pressure, winds, precipitation, etc.) that affect air quality (emissions, precipitation leaching, gas/particle balance, etc.). The objective of this synthesis report is to provide a study to shed light on the consequences of air quality variation as a function of climate change and emissions in the near future (horizons2030 and 2050), in particular on the climate scenario RCP (Representative Concentration Pathway) 8.5 which describes an absence of climate change policies (Riahi et al., 2011). Within the framework of this synthesis report, we are committed to: - Communicating a qualitative assessment of the variation in the main pollutants, particularly in France; - Where possible, quantifying the impact in urban agglomerations; - Studying in particular the future modification of ozone (O3), coarse particles (PM10), fine particles (PM2.5) and nitrogen oxides (NOx). -translating impacts into additional claims experience for insurance cover poposed under personal insurance contracts.

Suggested Citation

  • Yannick Drif & Palmira Messina² & Pierre Valade, 2020. "Conséquences du changement climatique sur la pollution de l'air et impact en assurance de personnes," Working Papers hal-02998527, HAL.
  • Handle: RePEc:hal:wpaper:hal-02998527
    Note: View the original document on HAL open archive server: https://hal.science/hal-02998527
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02998527/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    2. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    3. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    2. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    3. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    4. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    5. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    6. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    7. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    8. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    9. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    10. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    11. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    12. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    13. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    14. Perrihan Al-Riffai & Julian Blohmke & Clemens Breisinger & Manfred Wiebelt, 2015. "Harnessing the Sun and Wind for Economic Development? An Economy-Wide Assessment for Egypt," Sustainability, MDPI, vol. 7(6), pages 1-27, June.
    15. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    16. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    17. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    18. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    19. Jin-Young Kim & Hyun-Goo Kim & Yong-Heack Kang, 2017. "Offshore Wind Speed Forecasting: The Correlation between Satellite-Observed Monthly Sea Surface Temperature and Wind Speed over the Seas around the Korean Peninsula," Energies, MDPI, vol. 10(7), pages 1-15, July.
    20. Frame, Damien & Hannon, Matthew & Bell, Keith & McArthur, Stephen, 2018. "Innovation in regulated electricity distribution networks: A review of the effectiveness of Great Britain's Low Carbon Networks Fund," Energy Policy, Elsevier, vol. 118(C), pages 121-132.

    More about this item

    Keywords

    santé; pollution; particules fines; changement climatique; assurance;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02998527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.