IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01294644.html
   My bibliography  Save this paper

BEVs and PHEVs in France: Market trends and key drivers of their short-term development

Author

Listed:
  • Eleonora Morganti

    (IFSTTAR/AME/SPLOTT - Systèmes Productifs, Logistique, Organisation des Transports et Travail - IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux - Communauté Université Paris-Est)

  • Virginie Boutueil

    (LVMT - Laboratoire Ville, Mobilité, Transport - IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech)

  • Fabien Leurent

    (LVMT - Laboratoire Ville, Mobilité, Transport - IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech)

Abstract

This interim report for Task 4.1 looks into the current sales and market trends for electric vehicles worldwide, as well as in several European countries, and brings out a set of factors that are likely to influence the French market for PEVs in the short term (2020). We identify three main factors as key drivers of the uptake of PEVs in Europe and in France in the near-term future : - Technology improvements and purchase subsidies to reduce the retail price of PEVs ; - Standardisation throughout Europe, as defined by the 2014 EU Directive on the deployment of alternative fuels infrastructure, to lay the ground for wider consumer acceptance ; and - Deployment of fast-charging infrastructure (together with conventional and semi-fast chargers), to reduce "range anxiety" and to promote the use of PEVs for long-distance trips.

Suggested Citation

  • Eleonora Morganti & Virginie Boutueil & Fabien Leurent, 2015. "BEVs and PHEVs in France: Market trends and key drivers of their short-term development," Working Papers hal-01294644, HAL.
  • Handle: RePEc:hal:wpaper:hal-01294644
    Note: View the original document on HAL open archive server: https://enpc.hal.science/hal-01294644
    as

    Download full text from publisher

    File URL: https://enpc.hal.science/hal-01294644/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morganti, Eleonora & Browne, Michael, 2018. "Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective," Transport Policy, Elsevier, vol. 63(C), pages 90-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    2. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    3. Yilmaz, Murat, 2015. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 80-99.
    4. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    5. Romo, R. & Micheloud, O., 2015. "Power quality of actual grids with plug-in electric vehicles in presence of renewables and micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 189-200.
    6. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    7. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    8. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    9. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    11. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    12. Adnan, Nadia & Md Nordin, Shahrina & Hadi Amini, M. & Langove, Naseebullah, 2018. "What make consumer sign up to PHEVs? Predicting Malaysian consumer behavior in adoption of PHEVs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 259-278.
    13. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    14. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    15. Rahmani, Djamel & Loureiro, Maria L., 2019. "Assessing drivers’ preferences for hybrid electric vehicles (HEV) in Spain," Research in Transportation Economics, Elsevier, vol. 73(C), pages 89-97.
    16. Xiao, Xu & Chen, Zi-Rui & Nie, Pu-Yan, 2020. "Analysis of two subsidies for EVs: Based on an expanded theoretical discrete-choice model," Energy, Elsevier, vol. 208(C).
    17. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    18. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    19. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    More about this item

    Keywords

    electric vehicles; charging infrastructure; fast-charging;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01294644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.