IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01219616.html
   My bibliography  Save this paper

Rare event simulation related to financial risks: efficient estimation and sensitivity analysis

Author

Listed:
  • Ankush Agarwal

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Stefano de Marco

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Emmanuel Gobet

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Gang Liu

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper, we develop the reversible shaking transformation methods on path space of Gobet and Liu [GL15] to estimate the rare event statistics arising in different financial risk settings which are embedded within a unified framework of isonormal Gaussian process. Namely, we combine splitting methods with both Interacting Particle System (IPS) technique and ergodic transformations using Parallel-One-Path (POP) estimators. We also propose an adaptive version for the POP method and prove its convergence. We demonstrate the application of our methods in various examples which cover usual semi-martingale stochastic models (not necessarily Markovian) driven by Brownian motion and, also, models driven by fractional Brownian motion (non semi-martingale) to address various financial risks. Interestingly, owing to the Gaussian process framework, our methods are also able to efficiently handle the important problem of sensitivities of rare event statistics with respect to the model parameters.

Suggested Citation

  • Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & Gang Liu, 2017. "Rare event simulation related to financial risks: efficient estimation and sensitivity analysis," Working Papers hal-01219616, HAL.
  • Handle: RePEc:hal:wpaper:hal-01219616
    Note: View the original document on HAL open archive server: https://polytechnique.hal.science/hal-01219616v2
    as

    Download full text from publisher

    File URL: https://polytechnique.hal.science/hal-01219616v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asmussen, Søren & Glynn, Peter W., 2011. "A new proof of convergence of MCMC via the ergodic theorem," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1482-1485, October.
    2. Archil Gulisashvili & Peter Tankov, 2013. "Tail behavior of sums and differences of log-normal random variables," Papers 1309.3057, arXiv.org, revised Jan 2016.
    3. Griselda Deelstra & Freddy Delbaen, 1998. "Convergence of discretised stochastic interest rate: processes with stochastic drift term," ULB Institutional Repository 2013/7584, ULB -- Universite Libre de Bruxelles.
    4. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    5. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    6. Gal, S. & Rubinstein, R.Y. & Ziv, A., 1984. "On the optimality and efficiency of common random numbers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 26(6), pages 502-512.
    7. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    8. G. Deelstra & F. Delbaen, 1998. "Convergence of discretized stochastic (interest rate) processes with stochastic drift term," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 14(1), pages 77-84, March.
    9. Glynn, Peter W. & Ormoneit, Dirk, 2002. "Hoeffding's inequality for uniformly ergodic Markov chains," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 143-146, January.
    10. Emmanuel Gobet, 2004. "Revisiting the Greeks for European and American Options," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 3, pages 53-71, World Scientific Publishing Co. Pte. Ltd..
    11. René Carmona & Jean-Pierre Fouque & Douglas Vestal, 2009. "Interacting particle systems for the computation of rare credit portfolio losses," Finance and Stochastics, Springer, vol. 13(4), pages 613-633, September.
    12. Søren Asmussen & Reuven Y. Rubinstein, 1999. "Sensitivity Analysis of Insurance Risk Models via Simulation," Management Science, INFORMS, vol. 45(8), pages 1125-1141, August.
    13. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    14. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    15. Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), 2004. "Stochastic Processes and Applications to Mathematical Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 5487, January.
    16. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Extreme-Strike Asymptotics for General Gaussian Stochastic Volatility Models," Papers 1502.05442, arXiv.org, revised Feb 2017.
    17. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    18. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    2. Paolo Foschi & Andrea Pascucci, 2008. "Path dependent volatility," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(1), pages 13-32, May.
    3. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, January.
    4. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    5. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    6. Barrieu, Pauline & Scandolo, Giacomo, 2014. "Assessing financial model risk," LSE Research Online Documents on Economics 60084, London School of Economics and Political Science, LSE Library.
    7. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    8. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Marcel Nutz, 2013. "Utility Maximization under Model Uncertainty in Discrete Time," Papers 1307.3597, arXiv.org.
    10. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    11. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    12. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    13. Jiro Akahori & Xiaoming Song & Tai-Ho Wang, 2017. "Probability density of lognormal fractional SABR model," Papers 1702.08081, arXiv.org, revised Jan 2019.
    14. Jakob Sohl, 2012. "Confidence sets in nonparametric calibration of exponential L\'evy models," Papers 1202.6611, arXiv.org, revised Sep 2013.
    15. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    16. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    18. Michael Thaden & Carsten S. Wehn, 2020. "Model validation and model risk: reaching the end of the line?," Journal of Banking Regulation, Palgrave Macmillan, vol. 21(4), pages 382-394, December.
    19. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
    20. Jakob Söhl, 2012. "Confidence sets in nonparametric calibration of exponential Lévy models," SFB 649 Discussion Papers SFB649DP2012-012, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01219616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.