Advanced Search
MyIDEAS: Login to save this paper or follow this series

Stochastic dominance with respect to a capacity and risk measures

Contents:

Author Info

  • Miryana Grigorova

    ()
    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - CNRS : UMR7599 - Université Pierre et Marie Curie - Paris VI - Université Paris Diderot - Paris 7)

Registered author(s):

    Abstract

    Pursuing our previous work in which the classical notion of increasing convex stochastic dominance relation with respect to a probability has been extended to the case of a normalised monotone (but not necessarily additive) set function also called a capacity, the present paper gives a generalization to the case of a capacity of the classical notion of increasing stochastic dominance relation. This relation is characterized by using the notions of distribution function and quantile function with respect to the given capacity. Characterizations, involving Choquet integrals with respect to a distorted capacity, are established for the classes of monetary risk measures (defined on the space of bounded real-valued measurable functions) satisfying the properties of comonotonic additivity and consistency with respect to a given generalized stochastic dominance relation. Moreover, under suitable assumptions, a "Kusuoka-type" characterization is proved for the class of monetary risk measures having the properties of comonotonic additivity and consistency with respect to the generalized increasing convex stochastic dominance relation. Generalizations to the case of a capacity of some well-known risk measures (such as the Value at Risk or the Tail Value at Risk) are provided as examples. It is also established that some well-known results about Choquet integrals with respect to a distorted probability do not necessarily hold true in the more general case of a distorted capacity.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hal.archives-ouvertes.fr/docs/00/63/96/67/PDF/stochastic_orderings_and_risk_measures.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by HAL in its series Working Papers with number hal-00639667.

    as in new window
    Length:
    Date of creation: 09 Nov 2011
    Date of revision:
    Handle: RePEc:hal:wpaper:hal-00639667

    Note: View the original document on HAL open archive server: http://hal.archives-ouvertes.fr/hal-00639667/en/
    Contact details of provider:
    Web page: http://hal.archives-ouvertes.fr/

    Related research

    Keywords: Choquet integral ; stochastic orderings with respect to a capacity ; distortion risk measure ; quantile function with respect to a capacity ; distorted capacity ; Choquet expected utility ; ambiguity ; non-additive probability ; Value at Risk ; Rank-dependent expected utility ; behavioural finance ; maximal correlation risk measure ; quantile-based risk measure ; Kusuoka's characterization theorem;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, De Gruyter, vol. 24(1/2006), pages 25, July.
    2. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, Wiley Blackwell, vol. 9(3), pages 203-228.
    3. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, Econometric Society, vol. 57(3), pages 571-87, May.
    4. Carlier, Guillaume & Dana, Rose-Anne, 2003. "Core of convex distortions of a probability," Economics Papers from University Paris Dauphine 123456789/5446, Paris Dauphine University.
    5. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    6. Song, Yongsheng & Yan, Jia-An, 2009. "Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 459-465, December.
    7. Carlier, G. & Dana, R. A., 2003. "Core of convex distortions of a probability," Journal of Economic Theory, Elsevier, vol. 113(2), pages 199-222, December.
    8. Alexander Cherny & Pavel Grigoriev, 2007. "Dilatation monotone risk measures are law invariant," Finance and Stochastics, Springer, vol. 11(2), pages 291-298, April.
    9. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00639667. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.