IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01415461.html
   My bibliography  Save this paper

Will fleet managers really help vehicle fleets to become electric?

Author

Listed:
  • Magali Pierre

    (EDF R&D GRETS - Groupe de Recherche Energie, Technologie et Société - EDF R&D - EDF R&D - EDF - EDF)

  • Eleonora Morganti

    (LVMT - Laboratoire Ville, Mobilité, Transport - IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech)

  • Virginie Boutueil

    (LVMT - Laboratoire Ville, Mobilité, Transport - IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech)

Abstract

Over the last few years, obligations to reduce carbon dioxide emissions have led European States to propose ambitious targets concerning electrifying car fleets. In France for instance, electric vehicles are required to cover a quarter of all new car purchases in big companies and public administrations. In these organizations, departments that are traditionally in charge of company vehicles have thus been tasked to implement these policy decisions. General Resources have become de facto responsible for testing and managing these new EVs. Illustrating our results through five case-studies that took place in France in 2012-2015, we will show how these departments, and notably fleet managers, carry out the numerous tasks accompanying the spreading of EVs in their organizations: acquiring these vehicles (and the charging infrastructure), allocating them and managing the charging of the cars. The allocation, whether as fleet cars or executive ones, is an important step for the success of their implementation in these companies. We will also point out the contradictory significations and powerful constraints that complicate the performance of these tasks. Their achievement strengthens the role of the fleet managers, who turn out to be crucial but unexpected players in electricity demand.

Suggested Citation

  • Magali Pierre & Eleonora Morganti & Virginie Boutueil, 2016. "Will fleet managers really help vehicle fleets to become electric?," Post-Print hal-01415461, HAL.
  • Handle: RePEc:hal:journl:hal-01415461
    Note: View the original document on HAL open archive server: https://enpc.hal.science/hal-01415461
    as

    Download full text from publisher

    File URL: https://enpc.hal.science/hal-01415461/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nesbitt, Kevin & Sperling, Daniel, 2001. "Fleet Purchase Behavior: Decision Processes and Implications for New Vehicle Technologies and Fuels," Institute of Transportation Studies, Working Paper Series qt15k63162, Institute of Transportation Studies, UC Davis.
    2. Nesbitt, Kevin & Sperling, Daniel, 1998. "Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets," University of California Transportation Center, Working Papers qt0q6053j9, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Campíñez-Romero, Severo & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2018. "A hydrogen refuelling stations infrastructure deployment for cities supported on fuel cell taxi roll-out," Energy, Elsevier, vol. 148(C), pages 1018-1031.
    3. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    4. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    5. Kelley, Scott & Kuby, Michael, 2017. "Decentralized refueling of compressed natural gas (CNG) fleet vehicles in Southern California," Energy Policy, Elsevier, vol. 109(C), pages 350-359.
    6. Williams, Brett D, 2010. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management," University of California Transportation Center, Working Papers qt15f9495j, University of California Transportation Center.
    7. Anita Gärling & John Thøgersen, 2001. "Marketing of electric vehicles," Business Strategy and the Environment, Wiley Blackwell, vol. 10(1), pages 53-65, January.
    8. Kurani, Kenneth S & Miller, Marshall & Sugihara, Claire & Stepnitz, Eli-Alston & Nesbitt, Kevin A, 2023. "Determinants of Medium- and Heavy-Duty Truck Fleet Turnover," Institute of Transportation Studies, Working Paper Series qt20n8n4mb, Institute of Transportation Studies, UC Davis.
    9. Zhao, Jimin & Melaina, Marc W., 2006. "Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China," Energy Policy, Elsevier, vol. 34(11), pages 1299-1309, July.
    10. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt4kv151dp, Institute of Transportation Studies, UC Davis.
    11. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    12. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    13. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt16k010cq, Institute of Transportation Studies, UC Davis.
    14. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    15. Oscar Lopez Jaramillo & Joel Rinebold & Michael Kuby & Scott Kelley & Darren Ruddell & Rhian Stotts & Aimee Krafft & Elizabeth Wentz, 2021. "Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration," Energies, MDPI, vol. 14(22), pages 1-26, November.
    16. Ingo Kastner & Annalena Becker & Sebastian Bobeth & Ellen Matthies, 2021. "Are Professionals Rationals? How Organizations and Households Make E-Car Investments," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    17. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    18. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    19. Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
    20. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "A review on fuel economy test procedure for automobiles: Implementation possibilities in Malaysia and lessons for other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4029-4046.

    More about this item

    Keywords

    Fleet management; electric vehicles; corporate fleets;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01415461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.