IDEAS home Printed from https://ideas.repec.org/p/grz/wpaper/2017-04.html
   My bibliography  Save this paper

Identifying Phosphorus Hot Spots: A spatial analysis of the phosphorus balance as a result of manure application

Author

Listed:
  • Stefan Borsky

    (University of Graz)

  • Alexej Parchomenko

    (Vienna University of Technology)

Abstract

In this paper, we analyze the phosphorus balance as a result of manure application on the parish level for Denmark and investigate its local geographic distribution. For our analysis, we determine phosphorus loads for the five main animal groups and the phosphorus demand of the fifteen major crop categories. To identify statistical significant local patterns of phosphorus over- and undersupply we apply Getis-Ord Gi* hot spot analysis. Our results show that there is a large variability in the phosphorus balance within Denmark. Statistically significant hot spots appear mainly along the west coast, while cold spots are predominantly present on southern and eastern coasts towards the Baltic Sea. The proximity of oversupply areas to water bodies and other environmental sensitive areas reinforces the need for further phosphorus regulation. These findings show the importance of a spatial targeted regulation, which allows different levels of phosphorus application depending on local economic and environmental circumstances, e.g., distance to an environmental sensitive region.

Suggested Citation

  • Stefan Borsky & Alexej Parchomenko, 2017. "Identifying Phosphorus Hot Spots: A spatial analysis of the phosphorus balance as a result of manure application," Graz Economics Papers 2017-04, University of Graz, Department of Economics.
  • Handle: RePEc:grz:wpaper:2017-04
    as

    Download full text from publisher

    File URL: http://www100.uni-graz.at/vwlwww/forschung/RePEc/wpaper/2017-04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. der Straeten, Bart Van & Buysse, Jeroen & Nolte, Stephan & Lauwers, Ludwig & Claeys, Dakerlia & Van Huylenbroeck, Guido, 2011. "Markets of concentration permits: The case of manure policy," Ecological Economics, Elsevier, vol. 70(11), pages 2098-2104, September.
    2. Kuosmanen, Natalia & Kuosmanen, Timo, 2013. "Modeling Cumulative Effects of Nutrient Surpluses in Agriculture: A Dynamic Approach to Material Balance Accounting," Ecological Economics, Elsevier, vol. 90(C), pages 159-167.
    3. Jacobsen, Brian, 2011. "Costs of slurry separation technologies and alternative use of the solid fraction for biogas production or burning – a Danish perspective," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 1(2), pages 1-12.
    4. Kuosmanen, Natalia, 2014. "Estimating stocks and flows of nitrogen: Application of dynamic nutrient balance to European agriculture," Ecological Economics, Elsevier, vol. 108(C), pages 68-78.
    5. Polman, Nico B. P. & Thijssen, Geert J., 2002. "Combining results of different models: the case of a levy on the Dutch nitrogen surplus," Agricultural Economics, Blackwell, vol. 27(1), pages 41-49, May.
    6. Goetz, Renan U. & Zilberman, David, 2000. "The dynamics of spatial pollution: The case of phosphorus runoff from agricultural land," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 143-163, January.
    7. Willems, Jaap & van Grinsven, Hans J.M. & Jacobsen, Brian H. & Jensen, Tenna & Dalgaard, Tommy & Westhoek, Henk & Kristensen, Ib Sillebak, 2016. "Why Danish pig farms have far more land and pigs than Dutch farms? Implications for feed supply, manure recycling and production costs," Agricultural Systems, Elsevier, vol. 144(C), pages 122-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Guo & Tao Wu & Guojun Jiang & Lijie Pu & Jianzhen Zhang & Fei Xu & Hongmei Yu & Xuefeng Xie, 2021. "Spatial Distribution, Environmental Risk and Safe Utilization Zoning of Soil Heavy Metals in Farmland, Subtropical China," Land, MDPI, vol. 10(6), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    2. Zeng, Yangmei & He, Ke & Zhang, Junbiao & Li, Ping, 2023. "Adoption and ex-post impacts of sustainable manure management practices on income and happiness: Evidence from swine breeding farmers in rural Hubei, China," Ecological Economics, Elsevier, vol. 208(C).
    3. Ole Bonnichsen & Bran H. Jacobsen & Juan Tur-Cardona, 2018. "Danish farmers’ preferences for bio-based fertilisers – a choice experiment," IFRO Working Paper 2020/15, University of Copenhagen, Department of Food and Resource Economics.
    4. Schaefer, David & Britz, Wolfgang & Kuhn, Till, 2020. "Modelling policy induced manure transports at large scale using an agent-based simulation model," Discussion Papers 305270, University of Bonn, Institute for Food and Resource Economics.
    5. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    6. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    7. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    9. William Brock & Anastasios Xepapadeas, 2020. "Spatial Environmental and Resource Economics," DEOS Working Papers 2002, Athens University of Economics and Business.
    10. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    11. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    12. Xabadia, Angels & Goetz, Renan U. & Zilberman, David, 2006. "Control of accumulating stock pollution by heterogeneous producers," Journal of Economic Dynamics and Control, Elsevier, vol. 30(7), pages 1105-1130, July.
    13. Kuosmanen, Natalia, 2014. "Estimating stocks and flows of nitrogen: Application of dynamic nutrient balance to European agriculture," Ecological Economics, Elsevier, vol. 108(C), pages 68-78.
    14. W.A. Brock & A. Xepapadeas & A.N. Yannacopoulos, 2014. "Optimal Control in Space and Time and the Management of Environmental Resources," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 33-68, October.
    15. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    16. Hartmann, M. & Hediger, W. & Peter, S., 2008. "Reducing nitrogen losses from agricultural systems – an integrated economic assessment," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 43, March.
    17. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    18. Lelde Timma & Elina Dace & Troels Kristensen & Marie Trydeman Knudsen, 2020. "Dynamic Sustainability Assessment Tool: Case Study of Green Biorefineries in Danish Agriculture," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    19. Gilles Lafforgue & Walid Oueslati, 2007. "Optimal soil management and environmental policy," Economics Bulletin, AccessEcon, vol. 17(3), pages 1-10.
    20. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.

    More about this item

    Keywords

    Phosphorus; Spatial cluster detection; Nutrients balancing; Manure; Phosphorus recycling;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q19 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Other
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:grz:wpaper:2017-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Scholz (email available below). General contact details of provider: https://edirc.repec.org/data/vgrazat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.