IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/108876.html
   My bibliography  Save this paper

Unfolding-model-based visualization: theory, method and applications

Author

Listed:
  • Chen, Yunxiao
  • Ying, Zhiliang
  • Zhang, Haoran

Abstract

Multidimensional unfolding methods are widely used for visualizing item response data. Such methods project respondents and items simultaneously onto a low-dimensional Euclidian space, in which respondents and items are represented by ideal points, with personperson, item-item, and person-item similarities being captured by the Euclidian distances between the points. In this paper, we study the visualization of multidimensional unfolding from a statistical perspective. We cast multidimensional unfolding into an estimation problem, where the respondent and item ideal points are treated as parameters to be estimated. An estimator is then proposed for the simultaneous estimation of these parameters. Asymptotic theory is provided for the recovery of the ideal points, shedding lights on the validity of model-based visualization. An alternating projected gradient descent algorithm is proposed for the parameter estimation. We provide two illustrative examples, one on users’ movie rating and the other on senate roll call voting.

Suggested Citation

  • Chen, Yunxiao & Ying, Zhiliang & Zhang, Haoran, 2021. "Unfolding-model-based visualization: theory, method and applications," LSE Research Online Documents on Economics 108876, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:108876
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/108876/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    2. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiangping & Li, Xiang (Robert) & Hudson, Simon, 2013. "The application of generational theory to tourism consumer behavior: An American perspective," Tourism Management, Elsevier, vol. 37(C), pages 147-164.
    2. Funk, Patrick & Davis, Alex & Vaishnav, Parth & Dewitt, Barry & Fuchs, Erica, 2020. "Individual inconsistency and aggregate rationality: Overcoming inconsistencies in expert judgment at the technical frontier," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    3. Michael J. Greenacre & Patrick J. F. Groenen, 2016. "Weighted Euclidean Biplots," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 442-459, October.
    4. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    5. Wilde, Pieter de & Junk, Wiebke Marie & Palmtag, Tabea, 2016. "Accountability and opposition to globalization in international assemblies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 22(4), pages 823-846.
    6. Walesiak Marek & Dudek Andrzej, 2017. "Selecting the Optimal Multidimensional Scaling Procedure for Metric Data With R Environment," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 521-540, September.
    7. Joonwook Park & Wayne DeSarbo & John Liechty, 2008. "A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 451-472, September.
    8. Groenen, Patrick J. F. & van de Velden, Michel, 2016. "Multidimensional Scaling by Majorization: A Review," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i08).
    9. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    10. Dzemyda, Gintautas & Sabaliauskas, Martynas, 2021. "Geometric multidimensional scaling: A new approach for data dimensionality reduction," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    11. Willem Heiser, 2004. "Geometric representation of association between categories," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 513-545, December.
    12. Tom Everaert & Adriaan Spruyt & Jan De Houwer, 2018. "To IMPRES or to EXPRES? Exploiting comparative judgments to measure and visualize implicit and explicit preferences," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-14, January.
    13. Vera, J. Fernando & Macas, Rodrigo & Heiser, Willem J., 2009. "A dual latent class unfolding model for two-way two-mode preference rating data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3231-3244, June.
    14. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
    15. Wayne DeSarbo & Joonwook Park & Vithala Rao, 2011. "Deriving joint space positioning maps from consumer preference ratings," Marketing Letters, Springer, vol. 22(1), pages 1-14, March.
    16. repec:jss:jstsof:34:i10 is not listed on IDEAS
    17. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    18. Marti Sagarra & Frank M. T. A. Busing & Cecilio Mar-Molinero & Josep Rialp, 2018. "Assessing the asymmetric effects on branch rivalry of Spanish financial sector restructuring," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 131-153, March.
    19. Köhn, Hans-Friedrich, 2010. "Representation of individual differences in rectangular proximity data through anti-Q matrix decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2343-2357, October.
    20. Jonatan A. González & Francisco J. Rodríguez-Cortés & Elvira Romano & Jorge Mateu, 2021. "Classification of Events Using Local Pair Correlation Functions for Spatial Point Patterns," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 538-559, December.
    21. Chou, Jui-Sheng & Chien, Ya-Ling & Nguyen, Ngoc-Mai & Truong, Dinh-Nhat, 2018. "Pricing policy of floating ticket fare for riding high speed rail based on time-space compression," Transport Policy, Elsevier, vol. 69(C), pages 179-192.

    More about this item

    Keywords

    multidimensional unfolding; data visualization; distance matrix completion; item response data; embedding;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:108876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.