IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2008-31.html
   My bibliography  Save this paper

Prices In Emissions Permit Markets: The Role Of Investor Foresight And Capital Durability

Author

Listed:
  • Bryan K. Mignone

Abstract

Of the many regulatory responses to climate change, cap-and-trade is the only one currently endorsed by large segments of the scientific, economic and political establishments. Under this type of system, regulators set the overall path of carbon dioxide (CO2) reductions, allocate or auction the appropriate number of emissions allowances to regulated entities and - through trading - allow the market to converge upon the least expensive set of abatement opportunities. As a result, the trading price of allowances is not set by the regulator as it would be under a tax system, but instead evolves over time to reflect the underlying supply and demand for allowances. In this paper, I develop a simple theory that relates the initial clearing price of CO2 allowances to the marginal cost premium of carbon-free technology, the maximum rate of energy capital replacement and the market interest rate. This theory suggests that the initial clearing price may be lower than the canonical range of CO2 prices found in static technology assessments. Consequently, these results have broad implications for the design of a comprehensive regulatory solution to the climate problem, providing, for example, some intuition about the proper value of a possible CO2 price trigger in a future cap-and-trade system.

Suggested Citation

  • Bryan K. Mignone, 2008. "Prices In Emissions Permit Markets: The Role Of Investor Foresight And Capital Durability," CAMA Working Papers 2008-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2008-31
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2021-06/31_mignone_2008.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Vuuren, Detlef P. & Weyant, John & de la Chesnaye, Francisco, 2006. "Multi-gas scenarios to stabilize radiative forcing," Energy Economics, Elsevier, vol. 28(1), pages 102-120, January.
    2. Richard Newell & William Pizer & Jiangfeng Zhang, 2005. "Managing Permit Markets to Stabilize Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 133-157, June.
    3. Curtis Carlson & Dallas Burtraw & Maureen Cropper & Karen L. Palmer, 2000. "Sulfur Dioxide Control by Electric Utilities: What Are the Gains from Trade?," Journal of Political Economy, University of Chicago Press, vol. 108(6), pages 1292-1326, December.
    4. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
    5. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    6. McKibbin, Warwick J. & Wilcoxen, Peter J., 2004. "Estimates of the costs of Kyoto: Marrakesh versus the McKibbin-Wilcoxen blueprint," Energy Policy, Elsevier, vol. 32(4), pages 467-479, March.
    7. Roberts, Marc J. & Spence, Michael, 1976. "Effluent charges and licenses under uncertainty," Journal of Public Economics, Elsevier, vol. 5(3-4), pages 193-208.
    8. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    9. Baumol, William J, 1972. "On Taxation and the Control of Externalities," American Economic Review, American Economic Association, vol. 62(3), pages 307-322, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryan K. Mignone, 2008. "Technological Scarcity, Compliance Flexibility And The Optimal Time Path Of Emissions Abatement," CAMA Working Papers 2008-36, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    2. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    3. Bryan K. Mignone, 2008. "Technological Scarcity, Compliance Flexibility And The Optimal Time Path Of Emissions Abatement," CAMA Working Papers 2008-36, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Pizer, William A., 2005. "Climate Policy Design under Uncertainty," Discussion Papers 10584, Resources for the Future.
    5. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    6. Xiang-Yu Wang & Bao-Jun Tang, 2018. "Review of comparative studies on market mechanisms for carbon emission reduction: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1141-1162, December.
    7. Joseph E. Aldy & William A. Pizer, 2009. "Issues in Designing U.S. Climate Change Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 179-210.
    8. Lehmann, Paul, 2010. "Combining emissions trading and emissions taxes in a multi-objective world," UFZ Discussion Papers 4/2010, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    9. Quemin, Simon & Trotignon, Raphaël, 2021. "Emissions trading with rolling horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    10. Stavins, Robert, 2004. "Environmental Economics," RFF Working Paper Series dp-04-54, Resources for the Future.
    11. Stavins, Robert, 2004. "Can an Effective Global Climate Treaty Be Based on Sound Science, Rational Economics, and Pragmatic Politics?," RFF Working Paper Series dp-04-28, Resources for the Future.
    12. Brauneis, Alexander & Mestel, Roland & Palan, Stefan, 2013. "Inducing low-carbon investment in the electric power industry through a price floor for emissions trading," Energy Policy, Elsevier, vol. 53(C), pages 190-204.
    13. Abrell, Jan & Rausch, Sebastian, 2017. "Combining price and quantity controls under partitioned environmental regulation," Journal of Public Economics, Elsevier, vol. 145(C), pages 226-242.
    14. Doda, Baran & Quemin, Simon & Taschini, Luca, 2019. "Linking permit markets multilaterally," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    15. Wang, Banban & Pizer, William A. & Munnings, Clayton, 2022. "Price limits in a tradable performance standard," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    16. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    17. Frank Krysiak, 2008. "Ex-post efficient permit markets: a detailed analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(4), pages 397-410, April.
    18. Stavins, Robert Norman & Olmstead, Sheila M., 2009. "An Expanded Three-Part Architecture for Post-2012 International Climate Policy," Scholarly Articles 4449104, Harvard Kennedy School of Government.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2008-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.