Advanced Search
MyIDEAS: Login to save this paper or follow this series

Predictive Ability of Value-at-Risk Methods: Evidence from the Karachi Stock Exchange-100 Index

Contents:

Author Info

  • Javed Iqbal
  • Sara Azher
  • Ayesha Ijaz

Abstract

Value-at-risk (VaR) is a useful risk measure broadly used by financial institutions all over the world. VaR has been extensively used to measure systematic risk exposure in developed markets like of the US, Europe and Asia. This paper analyzes the accuracy of VaR measure for Pakistan’s emerging stock market using daily data from the Karachi Stock Exchange-100 index January 1992 to June 2008. We computed VaR by employing data on annual basis as well as for the whole 17 year period. Overall we found that VaR measures are more accurate when KSE index return volatility is estimated by GARCH (1,1) model especially at 95% confidence level. In this case the actual loss of KSE-100 index exceeds VaR in only two years 1998 and 2006. At 99% confidence level no method generally gives accurate VaR estimates. In this case ‘equally weighted moving average’, ‘exponentially weighted moving average’ and ‘GARCH’ based methods yield accurate VaR estimates in nearly half of the number of years. On average for the whole period 95% VaR is estimated to be about 2.5% of the value of KSE-100 index. That is on average in one out of 20 days KSE-100 index loses at least 2.5% of its value. We also investigate the asset pricing implication of downside risk measured by VaR and expected returns for decile portfolios sorted according to VaR of each stock. We found that portfolios with higher VaR have higher average returns. Therefore VaR as a measure of downside risk is associated with higher returns.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.eeri.eu/documents/wp/EERI_RP_2010_18.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Economics and Econometrics Research Institute (EERI), Brussels in its series EERI Research Paper Series with number EERI_RP_2010_18.

as in new window
Length:
Date of creation: 18 Aug 2010
Date of revision:
Handle: RePEc:eei:rpaper:eeri_rp_2010_18

Contact details of provider:
Postal: Avenue de Beaulieu, 1160 Brussels
Phone: +322 299 3523
Fax: +322 299 3523
Email:
Web page: http://www.eeri.eu/index.htm
More information through EDIRC

Related research

Keywords: Downside risk; Emerging Markets; Value-at-Risk.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2010. "The Use of GARCH Models in VaR Estimation," Working Papers 0048, University of Peloponnese, Department of Economics.
  2. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eei:rpaper:eeri_rp_2010_18. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia van Hove).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.