Advanced Search
MyIDEAS: Login to save this paper or follow this series

Optimal Bandwidth Choice for Interval Estimation in GMM Regression

Contents:

Author Info

Abstract

In time series regression with nonparametrically autocorrelated errors, it is now standard empirical practice to construct confidence intervals for regression coefficients on the basis of nonparametrically studentized t-statistics. The standard error used in the studentization is typically estimated by a kernel method that involves some smoothing process over the sample autocovariances. The underlying parameter (M) that controls this tuning process is a bandwidth or truncation lag and it plays a key role in the finite sample properties of tests and the actual coverage properties of the associated confidence intervals. The present paper develops a bandwidth choice rule for M that optimizes the coverage accuracy of interval estimators in the context of linear GMM regression. The optimal bandwidth balances the asymptotic variance with the asymptotic bias of the robust standard error estimator. This approach contrasts with the conventional bandwidth choice rule for nonparametric estimation where the focus is the nonparametric quantity itself and the choice rule balances asymptotic variance with squared asymptotic bias. It turns out that the optimal bandwidth for interval estimation has a different expansion rate and is typically substantially larger than the optimal bandwidth for point estimation of the standard errors. The new approach to bandwidth choice calls for refined asymptotic measurement of the coverage probabilities, which are provided by means of an Edgeworth expansion of the finite sample distribution of the nonparametrically studentized t-statistic. This asymptotic expansion extends earlier work and is of independent interest. A simple plug-in procedure for implementing this optimal bandwidth is suggested and simulations confirm that the new plug-in procedure works well in finite samples. Issues of interval length and false coverage probability are also considered, leading to a secondary approach to bandwidth selection with similar properties.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d16b/d1661.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1661.

as in new window
Length: 93 pages
Date of creation: May 2008
Date of revision:
Handle: RePEc:cwl:cwldpp:1661

Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Asymptotic expansion; Bias; Confidence interval; Coverage probability; Edgeworth expansion; Lag kernel; Long run variance; Optimal bandwidth; Spectrum;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Severini,Thomas A., 2005. "Elements of Distribution Theory," Cambridge Books, Cambridge University Press, number 9780521844727, April.
  2. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  3. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935 Elsevier.
  4. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  5. Atsushi Inoue & Mototsugu Shintani, 2001. "Bootstrapping GMM Estimators for Time Series," Vanderbilt University Department of Economics Working Papers 0129, Vanderbilt University Department of Economics, revised Aug 2003.
  6. Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
  7. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1350-1366, December.
  8. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
  9. Carlos Velasco & Peter M. Robinson, 2001. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 315, London School of Economics and Political Science, LSE Library.
  10. Taniguchi, Masanobu & Puri, Madan L., 1996. "Valid Edgeworth Expansions of M-Estimators in Regression Models with Weakly Dependent Resfduals," Econometric Theory, Cambridge University Press, vol. 12(02), pages 331-346, June.
  11. repec:att:wimass:9220 is not listed on IDEAS
  12. Jong, R.M. de & Davidson, J., 1996. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Discussion Paper 1996-52, Tilburg University, Center for Economic Research.
  13. Newey, Whitney K & West, Kenneth D, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Wiley Blackwell, vol. 61(4), pages 631-53, October.
  14. Andrews, Donald W.K., 2002. "EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS," Econometric Theory, Cambridge University Press, vol. 18(05), pages 1040-1085, October.
  15. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1130-1164, December.
  16. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
  2. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1661. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.