IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws098025.html
   My bibliography  Save this paper

Time series segmentation by Cusum, AutoSLEX and AutoPARM methods

Author

Listed:
  • Badagian Baharian, Ana Laura
  • Kaiser Remiro, Regina
  • Peña, Daniel

Abstract

Time series segmentation has many applications in several disciplines as neurology, cardiology, speech, geology and others. Many time series in this fields do not behave as stationary and the usual transformations to linearity cannot be used. This paper describes and evaluates different methods for segmenting non-stationary time series. We propose a modification of the algorithm in Lee et al. (2003) which is designed to searching for a unique change in the parameters of a time series, in order to find more than one change using an iterative procedure. We evaluate the performance of three approaches for segmenting time series: AutoSLEX (Ombao et al., 2002), AutoPARM (Davis et al., 2006) and the iterative cusum method mentioned above and referred as ICM. The evaluation of each methodology consists of two steps. First, we compute how many times each procedure fails in segmenting stationary processes properly. Second, we analyze the effect of different change patterns by counting how many times the corresponding methodology correctly segments a piecewise stationary process. ICM method has a better performance than AutoSLEX for piecewise stationary processes. AutoPARM presents a very satisfactory behaviour. The performance of the three methods is illustrated with time series datasets of neurology and speech.

Suggested Citation

  • Badagian Baharian, Ana Laura & Kaiser Remiro, Regina & Peña, Daniel, 2009. "Time series segmentation by Cusum, AutoSLEX and AutoPARM methods," DES - Working Papers. Statistics and Econometrics. WS ws098025, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws098025
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/9c96a220-3138-40ec-8351-bafc3e9caf75/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    2. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    3. Sangyeol Lee & Jeongcheol Ha & Okyoung Na & Seongryong Na, 2003. "The Cusum Test for Parameter Change in Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 781-796, December.
    4. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peña, Daniel & Badagian Baharian, Ana Laura & Kaiser Remiro, Regina, 2013. "The change-point problem and segmentation of processes with conditional heteroskedasticity," DES - Working Papers. Statistics and Econometrics. WS ws131718, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Olsen, Lena Ringstad & Chaudhuri, Probal & Godtliebsen, Fred, 2008. "Multiscale spectral analysis for detecting short and long range change points in time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3310-3330, March.
    4. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    5. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    6. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    7. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    8. Song, Junmo & Kang, Jiwon, 2018. "Parameter change tests for ARMA–GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 41-56.
    9. Joseph Guinness & Michael L. Stein, 2013. "Transformation to approximate independence for locally stationary Gaussian processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 574-590, September.
    10. Alessandro Casini & Pierre Perron, 2021. "Change-Point Analysis of Time Series with Evolutionary Spectra," Papers 2106.02031, arXiv.org, revised Jun 2021.
    11. Lajos Horvath & Lorenzo Trapani, 2021. "Changepoint detection in random coefficient autoregressive models," Papers 2104.13440, arXiv.org.
    12. Francesco Battaglia & Mattheos K. Protopapas, 2010. "Multi-regime models for nonlinear nonstationary time series," Working Papers 026, COMISEF.
    13. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    14. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    15. Selim Amrouni & Aymeric Moulin & Tucker Balch, 2022. "CTMSTOU driven markets: simulated environment for regime-awareness in trading policies," Papers 2202.00941, arXiv.org, revised Feb 2022.
    16. Fuxiao Li & Mengli Hao & Lijuan Yang, 2021. "Structural change detection in ordinal time series," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-16, August.
    17. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    18. Junmo Song & Sangyeol Lee, 2009. "Test for parameter change in discretely observed diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 165-183, June.
    19. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    20. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.

    More about this item

    Keywords

    Time series segmentation;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws098025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.