IDEAS home Printed from https://ideas.repec.org/p/cpb/discus/380.html
   My bibliography  Save this paper

Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications

Author

Listed:
  • Peter Zwaneveld

    (CPB Netherlands Bureau for Economic Policy Analysis)

  • Gerard Verweij

Abstract

Flood prevention policy is of crucial importance to the Netherlands. We assess economical optimal flood prevention where multiple barrier dams and dikes protect the hinterland against sea level rise and peak river discharges. Current optimal flood prevention methods only consider dike rings with no dependencies between dikes. We propose a graph-based model for a cost-benefit analysis to determine optimal dike heights with multiple dependencies between dikes and barrier dams. Our model provides great flexibility towards the modelling of flood probabilities, damage costs and investments cost. Moreover, our model is easy to implement and can be solved quickly to proven optimality. Our model is developed for and applied to important policy decisions in the Netherlands for the Lake IJssel and Lake Marken region. Two barrier dams together with the dikes surrounding these two lakes protect a large part of the Netherlands. The area contains 17 dike ring areas, including the City of Amsterdam. Our model and application shows the importance of taking into account dependencies between dikes and barrier dams. The results of our model were used for major Dutch flood protection policy decisions, i.e. the decision how to control the water levels in Lake IJssel and Lake Marken and what economic efficient flood protection standards apply to barrier dams and dikes. Dependencies between barrier dams and dike rings have a large impact on economically optimal flood standards. On the basis of our model, the Dutch government has decided not to increase the water level of Lake IJssel with up to 1,5 meter. This saved both the current landscape around Lake IJssel and billions of euros in coming decades.

Suggested Citation

  • Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380, CPB Netherlands Bureau for Economic Policy Analysis.
  • Handle: RePEc:cpb:discus:380
    as

    Download full text from publisher

    File URL: https://www.cpb.nl/sites/default/files/omnidownload/CPB-Discussion-Paper-380-Economic-decision-problems-in-multi-level-flood-protection.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dupuits, E.J.C. & Schweckendiek, T. & Kok, M., 2017. "Economic optimization of coastal flood defense systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 143-152.
    2. Peter Zwaneveld & Gerard Verweij, 2014. "Safe Dike Heights at Minimal Costs: An Integer Programming Approach," CPB Discussion Paper 277.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Ruud Brekelmans & Dick den Hertog & Kees Roos & Carel Eijgenraam, 2012. "Safe Dike Heights at Minimal Costs: The Nonhomogeneous Case," Operations Research, INFORMS, vol. 60(6), pages 1342-1355, December.
    4. Carel Eijgenraam & Jarl Kind & Carlijn Bak & Ruud Brekelmans & Dick den Hertog & Matthijs Duits & Kees Roos & Pieter Vermeer & Wim Kuijken, 2014. "Economically Efficient Standards to Protect the Netherlands Against Flooding," Interfaces, INFORMS, vol. 44(1), pages 7-21, February.
    5. Chahim, M. & Brekelmans, R.C.M. & den Hertog, D. & Kort, P.M., 2012. "An Impulse Control Approach to Dike Height Optimization (Revised version of CentER DP 2011-097)," Other publications TiSEM 3c3300f1-03c8-45b2-9fb6-4, Tilburg University, School of Economics and Management.
    6. Fraser, Jessica & Bricknell, Llewelyn & Kara, Mohammed & van der Linde, Whitey & Goldman, Geoff & Scheepers, Cor & McGregor, Andrew & Radford, Andrew, 2012. "Project Management in Perspective," OUP Catalogue, Oxford University Press, number 9780195993141 edited by Oosthuizen, Theuns & Venter, Rob.
    7. Zwaneveld, P. & Verweij, G. & van Hoesel, S., 2018. "Safe dike heights at minimal costs: An integer programming approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 294-301.
    8. Peter Zwaneveld & Gerard Verweij, 2014. "Safe Dike Heights at Minimal Costs: An Integer Programming Approach," CPB Discussion Paper 277, CPB Netherlands Bureau for Economic Policy Analysis.
    9. Bos, Frits & Zwaneveld, Peter, 2017. "Cost-benefit analysis for flood risk management and water governance in the Netherlands; an overview of one century," MPRA Paper 80933, University Library of Munich, Germany.
    10. Carel Eijgenraam, 2006. "Optimal safety standards for dike-ring areas," CPB Discussion Paper 62, CPB Netherlands Bureau for Economic Policy Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aida Abiad & Sander Gribling & Domenico Lahaye & Matthias Mnich & Guus Regts & Lluis Vena & Gerard Verweij & Peter Zwaneveld, 2018. "On the complexity of solving a decision problem with flow-depending costs: the case of the IJsselmeer dikes," Papers 1804.09752, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Grames, Johanna & Prskawetz, Alexia & Grass, Dieter & Viglione, Alberto & Blöschl, Günter, 2016. "Modeling the interaction between flooding events and economic growth," Ecological Economics, Elsevier, vol. 129(C), pages 193-209.
    3. Peter Zwaneveld & Gerard Verweij, 2014. "Safe Dike Heights at Minimal Costs: An Integer Programming Approach," CPB Discussion Paper 277, CPB Netherlands Bureau for Economic Policy Analysis.
    4. Peter Zwaneveld & Gerard Verweij, 2014. "Safe Dike Heights at Minimal Costs: An Integer Programming Approach," CPB Discussion Paper 277.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Klerk, Wouter Jan & Kanning, Wim & Kok, Matthijs & Wolfert, Rogier, 2021. "Optimal planning of flood defence system reinforcements using a greedy search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Bos, Frits & Zwaneveld, Peter, 2017. "Cost-benefit analysis for flood risk management and water governance in the Netherlands; an overview of one century," MPRA Paper 80933, University Library of Munich, Germany.
    7. Carel Eijgenraam & Ruud Brekelmans & Dick den Hertog & Kees Roos, 2017. "Optimal Strategies for Flood Prevention," Management Science, INFORMS, vol. 63(5), pages 1644-1656, May.
    8. Johanna Grames & Dieter Grass & Peter M. Kort & Alexia Prskawetz, 2019. "Optimal investment and location decisions of a firm in a flood risk area using impulse control theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1051-1077, December.
    9. Dupuits, E.J.C. & Schweckendiek, T. & Kok, M., 2017. "Economic optimization of coastal flood defense systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 143-152.
    10. Aida Abiad & Sander Gribling & Domenico Lahaye & Matthias Mnich & Guus Regts & Lluis Vena & Gerard Verweij & Peter Zwaneveld, 2018. "On the complexity of solving a decision problem with flow-depending costs: the case of the IJsselmeer dikes," Papers 1804.09752, arXiv.org.
    11. Postek, Krzysztof & den Hertog, Dick & Kind, J. & Pustjens, Chris, 2016. "Adjustable Robust Strategies for Flood Protection," Discussion Paper 2016-038, Tilburg University, Center for Economic Research.
    12. Zwaneveld, P. & Verweij, G. & van Hoesel, S., 2018. "Safe dike heights at minimal costs: An integer programming approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 294-301.
    13. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    14. Chahim, M. & Brekelmans, R.C.M. & den Hertog, D. & Kort, P.M., 2012. "An Impulse Control Approach to Dike Height Optimization (Revised version of CentER DP 2011-097)," Discussion Paper 2012-079, Tilburg University, Center for Economic Research.
    15. Rongen, G. & Morales-Nápoles, O. & Kok, M., 2022. "Expert judgment-based reliability analysis of the Dutch flood defense system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Perry C. Oddo & Ben S. Lee & Gregory G. Garner & Vivek Srikrishnan & Patrick M. Reed & Chris E. Forest & Klaus Keller, 2020. "Deep Uncertainties in Sea‐Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 153-168, January.
    17. Alessio Ciullo & Jan H. Kwakkel & Karin M. De Bruijn & Neelke Doorn & Frans Klijn, 2020. "Efficient or Fair? Operationalizing Ethical Principles in Flood Risk Management: A Case Study on the Dutch‐German Rhine," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1844-1862, September.
    18. Postek, Krzysztof & den Hertog, Dick & Kind, Jarl & Pustjens, Chris, 2019. "Adjustable robust strategies for flood protection," Omega, Elsevier, vol. 82(C), pages 142-154.
    19. Postek, Krzysztof & den Hertog, Dick & Kind, J. & Pustjens, Chris, 2016. "Adjustable Robust Strategies for Flood Protection," Other publications TiSEM 6e85c2ff-32dd-4c7e-8d95-a, Tilburg University, School of Economics and Management.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • H54 - Public Economics - - National Government Expenditures and Related Policies - - - Infrastructures
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpb:discus:380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cpbgvnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.