Advanced Search
MyIDEAS: Login to save this paper or follow this series

Sustainable Network Dynamics

Contents:

Author Info

  • Arnaud Dragicevic
  • Bernard Sinclair-Desgagné

    ()

Abstract

We propose a dynamic graph-theoretic model for ecosystem management as a control over networked system composed of target nodes and unmarked nodes. The network is represented by a complete graph, in which all vertices are connected by a unique edge. Target nodes are attracted by the objective function issued from the external ecosystem management. They pull the network towards the objective position, which is either non-null or stationary. The management policy is considered successful if the graph remains connected in time, that is, target nodes attain the objective and unmarked nodes stay in the convex hull. At the time of the ecosystem network transfer, the model yields an Impossibility Theorem as well as a Sustainability Criterion to maintain full connectivity of the network. The latter can be easily linked to the general definition of sustainability as ecosystem integrity preservation. At last, we identify three management rules to ensure the maintenance of connectivity in time, given the properties of the objective transposition function, the nature of connections and utility updating time-delays between the nodes Nous proposons un modèle dynamique de gestion des écosystèmes par la théorie des graphes en tant que contrôle d’un système en réseau composé de nœuds cibles et de nœuds non identifiés. Le réseau est représenté par un graphe complet dans lequel tous les nœuds sont connectés par une arête unique. Les nœuds cibles sont attirés par une fonction objectif issue d’un processus externe de gestion des écosystèmes. Ils tirent le réseau vers la position de l’objectif qui peut être non-nulle ou stationnaire. La politique de gestion est considérée réussie si le graphe reste connecté dans le temps, c'est-à-dire que les nœuds cibles atteignent l’objectif et les nœuds non identifiés restent dans l’enveloppe convexe. Lors de la transposition du réseau écosystémique dans le temps, le modèle génère un Théorème de l’Impossibilité ainsi qu’un Critère de Durabilité qui maintient la pleine connectivité du réseau. Ce dernier peut aisément être relié à la définition générale de la durabilité comme la préservation de l’intégrité écologique. Enfin, nous identifions trois règles de gestion pour assurer le maintien de la connectivité dans le temps, sachant les propriétés de la fonction objectif de transposition, la nature des connexions, et les retards de réactualisation de l’utilité entre les nœuds.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cirano.qc.ca/pdf/publication/2011s-51.pdf
Download Restriction: no

Bibliographic Info

Paper provided by CIRANO in its series CIRANO Working Papers with number 2011s-51.

as in new window
Length:
Date of creation: 01 Jun 2011
Date of revision:
Handle: RePEc:cir:cirwor:2011s-51

Contact details of provider:
Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
Phone: (514) 985-4000
Fax: (514) 985-4039
Email:
Web page: http://www.cirano.qc.ca/
More information through EDIRC

Related research

Keywords: bioeconomics; ecosystem management; graph theory; connectedness.; bioéconomie; gestion des écosystèmes; théorie des graphes; connectivité;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2011s-51. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.