IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt11q5p33w.html
   My bibliography  Save this paper

Guidebook on Pedestrian and Bicycle Volume Data Collection

Author

Listed:
  • Ryus, Paul
  • Ferguson, Erin
  • Laustsen, Kelly M.
  • Schneider, Robert J.
  • Proulx, Frank R.
  • Hull, Tony
  • Miranda-Moreno, Luis

Abstract

NCHRP Report 797: Guidebook on Pedestrian and Bicycle Volume Data Collection is directed to practitioners involved in collecting non-motorized count data. The Guidebook (1) describes methods and technologies for counting pedestrians and bicyclists, (2) offers guidance on developing a non-motorized count program, (3) gives suggestions on selecting appropriate counting methods and technologies, and (4) provides examples of how organizations have used non-motorized count data to better fulfill their missions. The research behind the Guidebook can be found on the TRB website as NCHRP Web-Only Document 205: Methods and Technologies for Pedestrian and Bicycle Volume Data Collection (NWOD 205). NWOD 205 includes the results of the testing and evaluation of a range of automated count technologies that capture pedestrian and bicycle volume data.

Suggested Citation

  • Ryus, Paul & Ferguson, Erin & Laustsen, Kelly M. & Schneider, Robert J. & Proulx, Frank R. & Hull, Tony & Miranda-Moreno, Luis, 2014. "Guidebook on Pedestrian and Bicycle Volume Data Collection," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt11q5p33w, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt11q5p33w
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/11q5p33w.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schneider, Robert J. & Diogenes, Mara Chagas & Arnold, Lindsay S. & Attaset, Vanvisa & Griswold, Julia & Ragland, David R, 2010. "Association between Roadway Intersection Characteristics and Pedestrian Crash Risk in Alameda County, California," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0d48w4gz, Institute of Transportation Studies, UC Berkeley.
    2. Schneider, Robert J. & Arnold, Lindsay S. & Ragland, David R., 2009. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr8h66j, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Mintu Miah & Kate Kyung Hyun & Stephen P. Mattingly & Hannan Khan, 2023. "Estimation of daily bicycle traffic using machine and deep learning techniques," Transportation, Springer, vol. 50(5), pages 1631-1684, October.
    2. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    3. Jestico, Ben & Nelson, Trisalyn & Winters, Meghan, 2016. "Mapping ridership using crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 52(C), pages 90-97.
    4. Munira, Sirajum & Sener, Ipek N., 2020. "A geographically weighted regression model to examine the spatial variation of the socioeconomic and land-use factors associated with Strava bike activity in Austin, Texas," Journal of Transport Geography, Elsevier, vol. 88(C).
    5. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    6. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Representing pedestrian activity in travel demand models: Framework and application," Journal of Transport Geography, Elsevier, vol. 52(C), pages 111-122.
    7. Mohammad Anwar Alattar & Caitlin Cottrill & Mark Beecroft, 2021. "Sources and Applications of Emerging Active Travel Data: A Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srinivas S. Pulugurtha & L. Prasanna Srirangam, 2022. "Pedestrian safety at intersections near light rail transit stations," Public Transport, Springer, vol. 14(3), pages 583-608, October.
    2. Singleton, Patrick A. & Park, Keunhyun & Lee, Doo Hong, 2021. "Varying influences of the built environment on daily and hourly pedestrian crossing volumes at signalized intersections estimated from traffic signal controller event data," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Juwon Chung & Seung-Nam Kim & Hyungkyoo Kim, 2019. "The Impact of PM 10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea," IJERPH, MDPI, vol. 16(23), pages 1-23, December.
    4. Tang, Liying & Liu, Yugang & Li, JiaLi & Qi, Ruiting & Zheng, Shuai & Chen, Bin & Yang, Hongtai, 2020. "Pedestrian crossing design and analysis for symmetric intersections: Efficiency and safety," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 187-206.
    5. Wang, Xize & Lindsey, Greg & Hankey, Steve & Hoff, Kris, 2014. "Estimating Mixed-Mode Urban Trail Traffic Using Negative Binomial Regression Models," SocArXiv evpfq, Center for Open Science.
    6. Mingyu Kang & Anne Vernez Moudon & Haena Kim & Linda Ng Boyle, 2019. "Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS," IJERPH, MDPI, vol. 16(19), pages 1-14, September.
    7. González, Silvia R. & Loukaitou-Sideris, Anastasia & Chapple, Karen, 2019. "Transit neighborhoods, commercial gentrification, and traffic crashes: Exploring the linkages in Los Angeles and the Bay Area," Journal of Transport Geography, Elsevier, vol. 77(C), pages 79-89.
    8. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    9. Sohrabi, Soheil & Paleti, Rajesh & Balan, Lacramioara & Cetin, Mecit, 2020. "Real-time prediction of public bike sharing system demand using generalized extreme value count model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 325-336.
    10. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Development of destination choice models for pedestrian travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 255-265.
    11. Pfiester, Laura Mali & Thompson, Russell G. & Zhang, Lele, 2021. "Spatiotemporal exploration of Melbourne pedestrian demand," Journal of Transport Geography, Elsevier, vol. 95(C).
    12. Strauss, Jillian & Miranda-Moreno, Luis F., 2013. "Spatial modeling of bicycle activity at signalized intersections," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 47-58.
    13. Schneider, Robert James, 2011. "Understanding Sustainable Transportation Choices: Shifting Routine Automobile Travel to Walking and Bicycling," University of California Transportation Center, Working Papers qt06v2g6dh, University of California Transportation Center.
    14. Yang, Hongtai & Lu, Xiaozhao & Cherry, Christopher & Liu, Xiaohan & Li, Yanlai, 2017. "Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 64(C), pages 184-194.
    15. Medury, Aditya PhD & Vlachogiannis, Dimitris & Grembek, Offer PhD, 2020. "Assessing the Variation of Curbside Safety at the City Block Level," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt46n9669d, Institute of Transportation Studies, UC Berkeley.
    16. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Representing pedestrian activity in travel demand models: Framework and application," Journal of Transport Geography, Elsevier, vol. 52(C), pages 111-122.

    More about this item

    Keywords

    Engineering; NCHRP; pedestrian; bicycle; safeTREC;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt11q5p33w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.