IDEAS home Printed from https://ideas.repec.org/a/ris/jtralu/0108.html
   My bibliography  Save this article

Spatial modeling of bicycle activity at signalized intersections

Author

Listed:

Abstract

This paper presents a methodology to investigate the link between bicycle activity and built environment, road and transit network characteristics, and bicycle facilities while also accounting for spatial autocorrelation between intersections. The methodology includes the normalization of manual cyclist counts to average seasonal daily volumes (ASDV), taking into account temporal variations and using hourly, daily, and monthly expansion factors obtained from automatic bicycle count data. To correct for weather conditions, two approaches were used. In the first approach, a relative weather ridership model was generated using the automatic bicycle count and weather data. In the second approach, weather variables were introduced directly into the model. For each approach, the effects of built environment, road and transit characteristics, and bicycle facilities on cyclist volumes were determined. It was found that employment, schools, metro stations, bus stops, parks, land mix, mean income, bicycle facility type (bicycle lanes and cycle tracks), length of bicycle facilities, average street length, and presence of parking entrances were associated with bicycle activity. From these, it was found that the main factors associated with bicycle activity were land-use mix, cycle track presence, and employment density. For instance, intersections with cycle tracks have on average 61 percent more cyclists than intersections without. An increase of 10 percent in land-use mix or employment density would cause an increase of 8 percent or 5.3 percent, respectively, in bicycle flows. The methods and results proposed in this research are helpful for planning bicycle facilities and analyzing cyclist safety. Limitations and future work are discussed at the end of this paper.

Suggested Citation

  • Strauss, Jillian & Miranda-Moreno, Luis F., 2013. "Spatial modeling of bicycle activity at signalized intersections," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 47-58.
  • Handle: RePEc:ris:jtralu:0108
    as

    Download full text from publisher

    File URL: http://www.jtlu.org/index.php/jtlu/article/view/296/335
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pucher, John & Buehler, Ralph, 2006. "Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies," Transport Policy, Elsevier, vol. 13(3), pages 265-279, May.
    2. Xing, Yan & Handy, Susan L. & Mokhtarian, Patricia L., 2010. "Factors Associated with Proportions and Miles of Bicycling for Transportation and Recreation in Six Small U.S. Cities," Institute of Transportation Studies, Working Paper Series qt74n4j1p0, Institute of Transportation Studies, UC Davis.
    3. David M. Drukker & Hua Peng & Ingmar Prucha & Rafal Raciborski, 2013. "Creating and managing spatial-weighting matrices with the spmat command," Stata Journal, StataCorp LP, vol. 13(2), pages 242-286, June.
    4. Nankervis, Max, 1999. "The effect of weather and climate on bicycle commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 417-431, August.
    5. Schneider, Robert J. & Arnold, Lindsay S. & Ragland, David R., 2009. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr8h66j, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    2. Thi Mai Chi Nguyen & Hironori Kato & Le Binh Phan, 2020. "Is Built Environment Associated with Travel Mode Choice in Developing Cities? Evidence from Hanoi," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    3. Munira, Sirajum & Sener, Ipek N., 2020. "A geographically weighted regression model to examine the spatial variation of the socioeconomic and land-use factors associated with Strava bike activity in Austin, Texas," Journal of Transport Geography, Elsevier, vol. 88(C).
    4. Osama, Ahmed & Sayed, Tarek & Bigazzi, Alexander Y., 2017. "Models for estimating zone-level bike kilometers traveled using bike network, land use, and road facility variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 14-28.
    5. Yang, Hongtai & Lu, Xiaozhao & Cherry, Christopher & Liu, Xiaohan & Li, Yanlai, 2017. "Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 64(C), pages 184-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    2. Ralph Buehler & John Pucher, 2012. "Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes," Transportation, Springer, vol. 39(2), pages 409-432, March.
    3. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    4. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    5. Verma, Meghna & Rahul, T.M. & Reddy, Peesari Vamshidhar & Verma, Ashish, 2016. "The factors influencing bicycling in the Bangalore city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 29-40.
    6. An, Ran & Zahnow, Renee & Pojani, Dorina & Corcoran, Jonathan, 2019. "Weather and cycling in New York: The case of Citibike," Journal of Transport Geography, Elsevier, vol. 77(C), pages 97-112.
    7. Zhibin Li & Wei Wang & Chen Yang & Haoyang Ding, 2017. "Bicycle mode share in China: a city-level analysis of long term trends," Transportation, Springer, vol. 44(4), pages 773-788, July.
    8. Dandan Xu & Yang Bian & Shinan Shu, 2020. "Research on the Psychological Model of Free-floating Bike-Sharing Using Behavior: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    9. Wadud, Zia, 2014. "Cycling in a changed climate," Journal of Transport Geography, Elsevier, vol. 35(C), pages 12-20.
    10. Jia, Yingnan & Fu, Hua, 2019. "Association between innovative dockless bicycle sharing programs and adopting cycling in commuting and non-commuting trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 12-21.
    11. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    12. Demetrio Carmine Festa & Carmen Forciniti, 2019. "Attitude towards Bike Use in Rende, a Small Town in South Italy," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    13. Senes, Giulio & Rovelli, Roberto & Bertoni, Danilo & Arata, Laura & Fumagalli, Natalia & Toccolini, Alessandro, 2017. "Factors influencing greenways use: Definition of a method for estimation in the Italian context," Journal of Transport Geography, Elsevier, vol. 65(C), pages 175-187.
    14. Smith, Michael S. & Kauermann, Göran, 2011. "Bicycle commuting in Melbourne during the 2000s energy crisis: A semiparametric analysis of intraday volumes," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1846-1862.
    15. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    16. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    17. Damant-Sirois, Gabriel & El-Geneidy, Ahmed M., 2015. "Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 113-125.
    18. Frank, Lawrence D. & Hong, Andy & Ngo, Victor Douglas, 2021. "Build it and they will cycle: Causal evidence from the downtown Vancouver Comox Greenway," Transport Policy, Elsevier, vol. 105(C), pages 1-11.
    19. Xing, Yan, 2012. "Contributions Of Individual, Physical, And Social Environmental Factors To Bicycling: A Structural Equations Modeling Study Of Six Small U.S. Cities," Institute of Transportation Studies, Working Paper Series qt4ch0j9sp, Institute of Transportation Studies, UC Davis.
    20. Eva Heinen & Kees Maat & Bert Wee, 2013. "The effect of work-related factors on the bicycle commute mode choice in the Netherlands," Transportation, Springer, vol. 40(1), pages 23-43, January.

    More about this item

    Keywords

    transport; land use;

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:jtralu:0108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Arlene Mathison (email available below). General contact details of provider: https://edirc.repec.org/data/ctumnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.