IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2017-009.html
   My bibliography  Save this paper

Characterizing and attributing the warming trend in sea and land surface temperatures

Author

Listed:
  • Francisco Estrada

    (Universidad Nacional AutÛnoma de MÈxico and VU University Amsterdam)

  • Luis Filipe Martins

    (ISCTE-IUL)

  • Pierre Perron

    (Boston University)

Abstract

Because of low-frequency internal variability, the observed and underlying warming trends in temperature series can be markedly different. Important differences in the observed nonlinear trends in hemisheric temperature series would suggest that the northern and southern hemispheres have responded differently to the changes in the radiative forcing. Using recent econometric techniques, we can reconcile such differences and show that all sea and land temperatures share similar time series properties and a common underlying warming trend having a dominant anthropogenic origin. We also investigate the interhemispheric temperature asymmetry (ITA) and show that the differences in warming between hemispheres is in part driven by antropogenic forcing but that most of the observed rapid changes is likely due to natural variability. The attribution of changes in ITA is relevant since increases in the temperature contrast between hemispheres could potentially produce a shift in the Intertropical Convergence Zone and alter rainfall patterns. The existence of a current slowdown in the warming and its causes is also investigated. The results suggest that the slowdown is a common feature in global and hemispheric sea and land temperatures that can, at least partly, be attributed to changes in anthropogenic forcing.

Suggested Citation

  • Francisco Estrada & Luis Filipe Martins & Pierre Perron, 2017. "Characterizing and attributing the warming trend in sea and land surface temperatures," Boston University - Department of Economics - Working Papers Series WP2017-009, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2017-009
    as

    Download full text from publisher

    File URL: http://www.bu.edu/econ/files/2017/04/atrribution-sea-land.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    2. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    3. Jeff Tollefson, 2014. "Climate change: The case of the missing heat," Nature, Nature, vol. 505(7483), pages 276-278, January.
    4. Pierre Perron & Francisco Estrada & Carlos Gay-García & Benjamín Martínez-López, 2011. "A time-series analysis of the 20th century climate simulations produced for the IPCC’s AR4," Boston University - Department of Economics - Working Papers Series WP2011-051, Boston University - Department of Economics.
    5. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    6. Fuu Ming Kai & Stanley C. Tyler & James T. Randerson & Donald R. Blake, 2011. "Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources," Nature, Nature, vol. 476(7359), pages 194-197, August.
    7. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    8. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    9. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    10. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    11. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    12. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
    13. Kim, Dukpa & Perron, Pierre, 2009. "Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses," Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
    14. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Estimating deterministic trends with an integrated or stationary noise component," Journal of Econometrics, Elsevier, vol. 151(1), pages 56-69, July.
    15. Robert K. Kaufmann & David I. Stern, 1997. "Evidence for human influence on climate from hemispheric temperature relations," Nature, Nature, vol. 388(6637), pages 39-44, July.
    16. Raphael Neukom & Joëlle Gergis & David J. Karoly & Heinz Wanner & Mark Curran & Julie Elbert & Fidel González-Rouco & Braddock K. Linsley & Andrew D. Moy & Ignacio Mundo & Christoph C. Raible & Eric J, 2014. "Inter-hemispheric temperature variability over the past millennium," Nature Climate Change, Nature, vol. 4(5), pages 362-367, May.
    17. Francisco Estrada & Pierre Perron, "undated". "Detection and attribution of climate change through econometric methods," Boston University - Department of Economics - Working Papers Series 2013-015, Boston University - Department of Economics.
    18. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    19. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    20. Pierre Perron & Eduardo Zorita & Francisco Estrada & Pierre Perron, 2017. "Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 711-732, September.
    21. Roy, Anindya & Fuller, Wayne A, 2001. "Estimation for Autoregressive Time Series with a Root Near 1," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 482-493, October.
    22. Francisco Estrada & Pierre Perron & Benjamin Martinez-Lopez, 2013. "Statistically-derived contributions of diverse human influences to 20th century temperature changes," Boston University - Department of Economics - Working Papers Series 2013-017, Boston University - Department of Economics.
    23. Bierens, Herman J, 2000. "Nonparametric Nonlinear Cotrending Analysis, with an Application to Interest and Inflation in the United States," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 323-337, July.
    24. John C. Fyfe & Gerald A. Meehl & Matthew H. England & Michael E. Mann & Benjamin D. Santer & Gregory M. Flato & Ed Hawkins & Nathan P. Gillett & Shang-Ping Xie & Yu Kosaka & Neil C. Swart, 2016. "Making sense of the early-2000s warming slowdown," Nature Climate Change, Nature, vol. 6(3), pages 224-228, March.
    25. Dukpa Kim & Tatsushi Oka & Francisco Estrada & Pierre Perron, 2017. "Inference Related to Common Breaks in a Multivariate System with Joined Segmented Trends with Applications to Global and Hemispheric Temperatures," Boston University - Department of Economics - Working Papers Series WP2017-003, Boston University - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Estrada & Pierre Perron, 2019. "Breaks, Trends and the Attribution of Climate Change: A Time-Series Analysis," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 1-31.
    2. Holt, Matthew T. & Teräsvirta, Timo, 2020. "Global hemispheric temperatures and co-shifting: A vector shifting-mean autoregressive analysis," Journal of Econometrics, Elsevier, vol. 214(1), pages 198-215.
    3. Manveer Kaur Mangat & Erhard Reschenhofer, 2020. "Frequency-Domain Evidence for Climate Change," Econometrics, MDPI, vol. 8(3), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Perron & Eduardo Zorita & Francisco Estrada & Pierre Perron, 2017. "Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 711-732, September.
    2. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    3. Francisco Estrada & Pierre Perron, 2019. "Breaks, Trends and the Attribution of Climate Change: A Time-Series Analysis," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 1-31.
    4. Dukpa Kim & Tatsushi Oka & Francisco Estrada & Pierre Perron, 2017. "Inference Related to Common Breaks in a Multivariate System with Joined Segmented Trends with Applications to Global and Hemispheric Temperatures," Boston University - Department of Economics - Working Papers Series WP2017-003, Boston University - Department of Economics.
    5. Francisco Estrada & Pierre Perron, "undated". "Detection and attribution of climate change through econometric methods," Boston University - Department of Economics - Working Papers Series 2013-015, Boston University - Department of Economics.
    6. Mohitosh Kejriwal & Claude Lopez, 2013. "Unit Roots, Level Shifts, and Trend Breaks in Per Capita Output: A Robust Evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 892-927, November.
    7. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    8. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    9. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    10. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    11. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2012. "Unit root testing under a local break in trend," Journal of Econometrics, Elsevier, vol. 167(1), pages 140-167.
    12. Nuno Sobreira & Luis C. Nunes & Paulo M. M. Rodrigues, 2014. "Characterizing Economic Growth Paths Based On New Structural Change Tests," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 845-861, April.
    13. Pierre Perron & Mototsugu Shintani & Tomoyoshi Yabu, 2017. "Testing for Flexible Nonlinear Trends with an Integrated or Stationary Noise Component," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 822-850, October.
    14. Francisco Estrada & Pierre Perron & Carlos Gay-García & Benjamín Martínez-López, 2013. "A Time-Series Analysis of the 20th Century Climate Simulations Produced for the IPCC’s Fourth Assessment Report," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    15. Harris, David & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Testing For A Unit Root In The Presence Of A Possible Break In Trend," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1545-1588, December.
    16. Sobreira, Nuno & Nunesz, Luis C. & Rodriguesz, Paulo M. M., 2012. "Neoclassical, semi-endogenous or endogenous growth theory? Evidence based on new structural change tests," Insper Working Papers wpe_291, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    17. Mohitosh Kejriwal & Pierre Perron, 2010. "A sequential procedure to determine the number of breaks in trend with an integrated or stationary noise component," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 305-328, September.
    18. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    19. Kim, Dukpa & Perron, Pierre, 2009. "Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses," Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
    20. Richard S. J. Tol & Francisco Estrada & Carlos Gay-García, 2012. "The persistence of shocks in GDP and the estimation of the potential economic costs of climate change," Working Paper Series 4312, Department of Economics, University of Sussex Business School.

    More about this item

    Keywords

    Climate change; warming hiatus; structural break; co-trending; principal component analysis.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2017-009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.