IDEAS home Printed from https://ideas.repec.org/p/bep/mchbio/1041.html
   My bibliography  Save this paper

Classification and selection of biomarkers in genomic data using LASSO

Author

Listed:
  • Debashis Ghosh

    (University of Michigan)

  • Arul Chinnaiyan

    (University of Michigan Pathology and Urology)

Abstract

High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been on assessing univariate associations between gene expression with clinical outcome (variable selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable selection/classification approach that is based on linear combinations of the gene expression profiles that maximize an accuracy measure summarized using the receiver operating characteristic curve. Under a specific probability model, this leads to consideration of linear discriminant functions. We incorporate an automated variable selection approach using LASSO. An equivalence between LASSO estimation with support vector machines allows for model fitting using standard software. We apply the proposed method to simulated data as well as data from a recently published prostate cancer study.

Suggested Citation

  • Debashis Ghosh & Arul Chinnaiyan, 2004. "Classification and selection of biomarkers in genomic data using LASSO," The University of Michigan Department of Biostatistics Working Paper Series 1041, Berkeley Electronic Press.
  • Handle: RePEc:bep:mchbio:1041
    Note: oai:bepress.com:umichbiostat-1041
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1041&context=umichbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saravana M. Dhanasekaran & Terrence R. Barrette & Debashis Ghosh & Rajal Shah & Sooryanarayana Varambally & Kotoku Kurachi & Kenneth J. Pienta & Mark A. Rubin & Arul M. Chinnaiyan, 2001. "Delineation of prognostic biomarkers in prostate cancer," Nature, Nature, vol. 412(6849), pages 822-826, August.
    2. Stuart G. Baker, 2000. "Identifying Combinations of Cancer Markers for Further Study as Triggers of Early Intervention," Biometrics, The International Biometric Society, vol. 56(4), pages 1082-1087, December.
    3. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    4. Martin W. McIntosh & Margaret Sullivan Pepe, 2002. "Combining Several Screening Tests: Optimality of the Risk Score," Biometrics, The International Biometric Society, vol. 58(3), pages 657-664, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
    2. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    3. Carol Y. Lin & Lance A. Waller & Robert H. Lyles, 2012. "The likelihood approach for the comparison of medical diagnostic system with multiple binary tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1437-1454, December.
    4. Debashis Ghosh & Moulinath Banerjee & Pinaki Biswas, 2004. "Binary isotonic regression procedures, with application to cancer biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1037, Berkeley Electronic Press.
    5. Drehmann, Mathias & Juselius, Mikael, 2014. "Evaluating early warning indicators of banking crises: Satisfying policy requirements," International Journal of Forecasting, Elsevier, vol. 30(3), pages 759-780.
    6. Yingye Zheng & Tianxi Cai & Ziding Feng, 2006. "Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers," Biometrics, The International Biometric Society, vol. 62(1), pages 279-287, March.
    7. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    8. Binbing Yu, 2009. "Approximating the risk score for disease diagnosis using MARS," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 769-778.
    9. Qing Lu & Nancy Obuchowski & Sungho Won & Xiaofeng Zhu & Robert C. Elston, 2010. "Using the Optimal Robust Receiver Operating Characteristic (ROC) Curve for Predictive Genetic Tests," Biometrics, The International Biometric Society, vol. 66(2), pages 586-593, June.
    10. Mei-Cheng Wang & Shanshan Li, 2012. "Bivariate Marker Measurements and ROC Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1207-1218, December.
    11. Debashis Ghosh & Arul Chinnaiyan, 2004. "Covariate adjustment in the analysis of microarray data from clinical studies," The University of Michigan Department of Biostatistics Working Paper Series 1030, Berkeley Electronic Press.
    12. Yuxin Zhu & Mei‐Cheng Wang, 2022. "Obtaining optimal cutoff values for tree classifiers using multiple biomarkers," Biometrics, The International Biometric Society, vol. 78(1), pages 128-140, March.
    13. Yue Wang & Jeremy Taylor, 2004. "Monotone Constrained Tensor-product B-spline with application to screening studies," The University of Michigan Department of Biostatistics Working Paper Series 1022, Berkeley Electronic Press.
    14. Debashis Ghosh, 2004. "Semiparametic models and estimation procedures for binormal ROC curves with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1038, Berkeley Electronic Press.
    15. Yanqing Wang & Ying‐Qi Zhao & Yingye Zheng, 2020. "Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint," Biometrics, The International Biometric Society, vol. 76(3), pages 853-862, September.
    16. Margaret Pepe & Tianxi Cai & Zheng Zhang, 2004. "Combining Predictors for Classification Using the Area Under the ROC Curve," UW Biostatistics Working Paper Series 1021, Berkeley Electronic Press.
    17. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    18. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    19. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    20. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:mchbio:1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.