Advanced Search
MyIDEAS: Login

Exact Properties of Measures of Optimal Investment for Institutional Investors

Contents:

Author Info

  • John Knight
  • Stephen Satchell

Abstract

We revisit the problem of calculating the exact distribution of optimal investments in a mean variance world under multivariate normality. The context we consider is where problems in optimisation are addressed through the use of Monte-Carlo simulation. Our findings give clear insight as to when Monte-Carlo simulation will, and will not work. Whilst a number of authors have considered aspects of this exact problem before, we extend the problem by considering the problem of an investor who wishes to maximise quadratic utility defined in terms of alpha and tracking errors. The results derived allow some exact and numerical analysis. Furthermore, they allow us to also derive results for the more traditional nonbenchmarked portfolio problem.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ems.bbk.ac.uk/research/wp/PDF/BWPEF0513.pdf
File Function: First version, 2005
Download Restriction: no

Bibliographic Info

Paper provided by Birkbeck, Department of Economics, Mathematics & Statistics in its series Birkbeck Working Papers in Economics and Finance with number 0513.

as in new window
Length:
Date of creation: Sep 2005
Date of revision:
Handle: RePEc:bbk:bbkefp:0513

Contact details of provider:
Postal: Malet Street, London WC1E 7HX, UK
Phone: 44-20- 76316429
Fax: 44-20- 76316416
Web page: http://www.ems.bbk.ac.uk/

Order Information:
Email:

Related research

Keywords: alpha; tracking error; mean-variance; Monte-Carlo;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ravi Jagannathan & Tongshu Ma, 2002. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," NBER Working Papers 8922, National Bureau of Economic Research, Inc.
  2. Green, R.C. & Hollifield, B., 1990. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," GSIA Working Papers 1990-12, Carnegie Mellon University, Tepper School of Business.
  3. Mark Britten-Jones, 1999. "The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, 04.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bbk:bbkefp:0513. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.