Advanced Search
MyIDEAS: Login to save this paper or follow this series

Phenomenology of the Interest Rate Curve

Contents:

Author Info

  • J. -P. Bouchaud

    (SPEC-Saclay, Science & Finance, Ecole Polytechnique)

  • N. Sagna

    (SPEC-Saclay, Science & Finance, Ecole Polytechnique)

  • R. Cont

    (SPEC-Saclay, Science & Finance, Ecole Polytechnique)

  • N. El-Karoui

    (SPEC-Saclay, Science & Finance, Ecole Polytechnique)

  • M. Potters

    (SPEC-Saclay, Science & Finance, Ecole Polytechnique)

Abstract

This paper contains a phenomenological description of the whole U.S. forward rate curve (FRC), based on an data in the period 1990-1996. We find that the average FRC (measured from the spot rate) grows as the square-root of the maturity, with a prefactor which is comparable to the spot rate volatility. This suggests that forward rate market prices include a risk premium, comparable to the probable changes of the spot rate between now and maturity, which can be understood as a `Value-at-Risk' type of pricing. The instantaneous FRC however departs form a simple square-root law. The distortion is maximum around one year, and reflects the market anticipation of a local trend on the spot rate. This anticipated trend is shown to be calibrated on the past behaviour of the spot itself. We show that this is consistent with the volatility `hump' around one year found by several authors (and which we confirm). Finally, the number of independent components needed to interpret most of the FRC fluctuations is found to be small. We rationalize this by showing that the dynamical evolution of the FRC contains a stabilizing second derivative (line tension) term, which tends to suppress short scale distortions of the FRC. This shape dependent term could lead, in principle, to arbitrage. However, this arbitrage cannot be implemented in practice because of transaction costs. We suggest that the presence of transaction costs (or other market `imperfections') is crucial for model building, for a much wider class of models becomes eligible to represent reality.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arxiv.org/pdf/cond-mat/9712164
File Function: Latest version
Download Restriction: no

Bibliographic Info

Paper provided by arXiv.org in its series Papers with number cond-mat/9712164.

as in new window
Length:
Date of creation: Dec 1997
Date of revision:
Handle: RePEc:arx:papers:cond-mat/9712164

Contact details of provider:
Web page: http://arxiv.org/

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, American Finance Association, vol. 47(3), pages 1209-27, July.
  2. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, American Finance Association, vol. 41(5), pages 1011-29, December.
  3. Schloegl, Erik & Daniel Sommer, 1997. "Factor Models and the Shape of the Term Structure," Discussion Paper Serie B, University of Bonn, Germany 395, University of Bonn, Germany.
  4. Rendleman, Richard J, Jr & Carabini, Christopher E, 1979. "The Efficiency of the Treasury Bill Futures Market," Journal of Finance, American Finance Association, American Finance Association, vol. 34(4), pages 895-914, September.
  5. Cox, John C. & Ingersoll, Jonathan Jr. & Ross, Stephen A., 1981. "The relation between forward prices and futures prices," Journal of Financial Economics, Elsevier, Elsevier, vol. 9(4), pages 321-346, December.
  6. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, Cambridge University Press, vol. 28(02), pages 235-254, June.
  7. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, Elsevier, vol. 5(2), pages 177-188, November.
  8. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, Annual Reviews, vol. 1(1), pages 69-96, November.
  9. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, Econometric Society, vol. 60(1), pages 77-105, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jean-Philippe Bouchaud, 2002. "An introduction to statistical finance," Science & Finance (CFM) working paper archive 313238, Science & Finance, Capital Fund Management.
  2. Baaquie, Belal E. & Yang, Cao, 2009. "Empirical analysis of quantum finance interest rates models," Physica A: Statistical Mechanics and its Applications, Elsevier, Elsevier, vol. 388(13), pages 2666-2681.
  3. Belal E. Baaquie, 1998. "Quantum Field Theory of Treasury Bonds," Papers, arXiv.org cond-mat/9809199, arXiv.org.
  4. Roncoroni, Andrea & Galluccio, Stefano & Guiotto, Paolo, 2010. "Shape factors and cross-sectional risk," Journal of Economic Dynamics and Control, Elsevier, Elsevier, vol. 34(11), pages 2320-2340, November.
  5. Rene Carmona & Michael Tehranchi, 2004. "A Characterization of Hedging Portfolios for Interest Rate Contingent Claims," Papers, arXiv.org math/0407119, arXiv.org.
  6. Belal Baaquie & Jean-Philippe Bouchaud, 2004. ""Stiff" Field Theory of Interest Rates and Psychological Future Time," Science & Finance (CFM) working paper archive 500064, Science & Finance, Capital Fund Management.
  7. Baaquie, Belal E. & Liang, Cui & Warachka, Mitch C., 2007. "Hedging LIBOR derivatives in a field theory model of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, Elsevier, vol. 374(2), pages 730-748.
  8. Rama Cont, 2005. "Modeling Term Structure Dynamics: An Infinite Dimensional Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 357-380.
  9. D. Sornette, 1998. "``String'' formulation of the Dynamics of the Forward Interest Rate Curve," Papers, arXiv.org cond-mat/9802136, arXiv.org.
  10. Rama Cont, 1999. "Modeling interest rate dynamics: an infinite-dimensional approach," Papers, arXiv.org cond-mat/9902018, arXiv.org.
  11. Belal E. Baaquie, 2001. "Quantum Field Theory of Forward Rates with Stochastic Volatility," Papers, arXiv.org cond-mat/0110506, arXiv.org.
  12. Markus Leippold & Liuren Wu, 2002. "Design and Estimation of Quadratic Term Structure Models," Finance, EconWPA 0207014, EconWPA.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/9712164. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.