IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.04464.html
   My bibliography  Save this paper

Integration of Fractional Order Black-Scholes Merton with Neural Network

Author

Listed:
  • Sarit Maitra
  • Vivek Mishra
  • Goutam Kr. Kundu
  • Kapil Arora

Abstract

This study enhances option pricing by presenting unique pricing model fractional order Black-Scholes-Merton (FOBSM) which is based on the Black-Scholes-Merton (BSM) model. The main goal is to improve the precision and authenticity of option pricing, matching them more closely with the financial landscape. The approach integrates the strengths of both the BSM and neural network (NN) with complex diffusion dynamics. This study emphasizes the need to take fractional derivatives into account when analyzing financial market dynamics. Since FOBSM captures memory characteristics in sequential data, it is better at simulating real-world systems than integer-order models. Findings reveals that in complex diffusion dynamics, this hybridization approach in option pricing improves the accuracy of price predictions. the key contribution of this work lies in the development of a novel option pricing model (FOBSM) that leverages fractional calculus and neural networks to enhance accuracy in capturing complex diffusion dynamics and memory effects in financial data.

Suggested Citation

  • Sarit Maitra & Vivek Mishra & Goutam Kr. Kundu & Kapil Arora, 2023. "Integration of Fractional Order Black-Scholes Merton with Neural Network," Papers 2310.04464, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2310.04464
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.04464
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panumart Sawangtong & Kamonchat Trachoo & Wannika Sawangtong & Benchawan Wiwattanapataphee, 2018. "The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense," Mathematics, MDPI, vol. 6(8), pages 1-14, July.
    2. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    3. Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
    4. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Rendleman, Richard J, Jr & Bartter, Brit J, 1979. "Two-State Option Pricing," Journal of Finance, American Finance Association, vol. 34(5), pages 1093-1110, December.
    7. Jin, Zhuo & Liu, Guo & Yang, Hailiang, 2020. "Optimal consumption and investment strategies with liquidity risk and lifetime uncertainty for Markov regime-switching jump diffusion models," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1130-1143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
    3. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    4. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Tabesh, Hamid, 1987. "Hedging price risk to soybean producers with futures and options: a case study," ISU General Staff Papers 1987010108000010306, Iowa State University, Department of Economics.
    7. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    8. Borges da Silva, Eduardo & Moreno Cordeiro de Sousa, Alexandre, 2022. "Avaliação econômico-financeira de fintechs no mercado brasileiro: o caso INTER [Economic and financial evaluation of fintech in the Brazilian market: the case of INTER]," MPRA Paper 115509, University Library of Munich, Germany.
    9. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    10. Ghaffari, Reza & Venkatesh, Bala, 2015. "Network constrained model for options based reserve procurement by wind generators using binomial tree," Renewable Energy, Elsevier, vol. 80(C), pages 348-358.
    11. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    12. Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
    13. Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
    14. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
    16. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    17. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.
    18. Chi-Cheng Hsia, 1983. "On Binomial Option Pricing," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(1), pages 41-46, March.
    19. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    20. Zafar Ahmad & Reilly Browne & Rezaul Chowdhury & Rathish Das & Yushen Huang & Yimin Zhu, 2023. "Fast American Option Pricing using Nonlinear Stencils," Papers 2303.02317, arXiv.org, revised Oct 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.04464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.