IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.00251.html
   My bibliography  Save this paper

Feature Selection for Personalized Policy Analysis

Author

Listed:
  • Maria Nareklishvili
  • Nicholas Polson
  • Vadim Sokolov

Abstract

In this paper, we propose Forest-PLS, a feature selection method for analyzing policy effect heterogeneity in a more flexible and comprehensive manner than is typically available with conventional methods. In particular, our method is able to capture policy effect heterogeneity both within and across subgroups of the population defined by observable characteristics. To achieve this, we employ partial least squares to identify target components of the population and causal forests to estimate personalized policy effects across these components. We show that the method is consistent and leads to asymptotically normally distributed policy effects. To demonstrate the efficacy of our approach, we apply it to the data from the Pennsylvania Reemployment Bonus Experiments, which were conducted in 1988-1989. The analysis reveals that financial incentives can motivate some young non-white individuals to enter the labor market. However, these incentives may also provide a temporary financial cushion for others, dissuading them from actively seeking employment. Our findings highlight the need for targeted, personalized measures for young non-white male participants.

Suggested Citation

  • Maria Nareklishvili & Nicholas Polson & Vadim Sokolov, 2022. "Feature Selection for Personalized Policy Analysis," Papers 2301.00251, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2301.00251
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.00251
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew F. Dixon & Nicholas G. Polson & Kemen Goicoechea, 2022. "Deep Partial Least Squares for Empirical Asset Pricing," Papers 2206.10014, arXiv.org.
    2. Vella, Francis & Verbeek, Marno, 1999. "Estimating and Interpreting Models with Endogenous Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 473-478, October.
    3. Asim Ansari & Kamel Jedidi & Sharan Jagpal, 2000. "A Hierarchical Bayesian Methodology for Treating Heterogeneity in Structural Equation Models," Marketing Science, INFORMS, vol. 19(4), pages 328-347, August.
    4. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    5. Carsten Hahn & Michael D. Johnson & Andreas Herrmann & Frank Huber, 2002. "Capturing Customer Heterogeneity Using A Finite Mixture Pls Approach," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 243-269, July.
    6. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    7. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    8. Yannis Bilias, 2000. "Sequential testing of duration data: the case of the Pennsylvania 'reemployment bonus' experiment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 575-594.
    9. Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
    10. Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2018. "Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," NBER Working Papers 24678, National Bureau of Economic Research, Inc.
    11. Abhijit Banerjee & Arun G. Chandrasekhar & Suresh Dalpath & Esther Duflo & John Floretta & Matthew O. Jackson & Harini Kannan & Francine N. Loza & Anirudh Sankar & Anna Schrimpf & Maheshwor Shrestha, 2021. "Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization," NBER Working Papers 28726, National Bureau of Economic Research, Inc.
    12. Matt Taddy & Matt Gardner & Liyun Chen & David Draper, 2016. "A Nonparametric Bayesian Analysis of Heterogenous Treatment Effects in Digital Experimentation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 661-672, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    4. Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jan 2024.
    5. Susan Athey & Katy Ann Bergstrom & Vitor Hadad & Julian C. Jamison & Berk Özler & Luca Parisotto & Julius Dohbit Sama, 2021. "Shared Decision-Making: Can Improved Counseling Increase Willingness to Pay for Modern Contraceptives?," Discussion Papers 2105, University of Exeter, Department of Economics.
    6. Anthony Strittmatter, 2018. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," Papers 1812.06533, arXiv.org, revised Dec 2021.
    7. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    8. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    9. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    10. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    12. Piasenti, Stefano & Valente, Marica & Van Veldhuizen, Roel & Pfeifer, Gregor, 2023. "Does Unfairness Hurt Women? The Effects of Losing Unfair Competitions," Working Papers 2023:7, Lund University, Department of Economics.
    13. Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
    14. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    15. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
    16. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
    18. Jan-Emmanuel De Neve & Clément Imbert & Johannes Spinnewijn & Teodora Tsankova & Maarten Luts, 2021. "How to Improve Tax Compliance? Evidence from Population-Wide Experiments in Belgium," Journal of Political Economy, University of Chicago Press, vol. 129(5), pages 1425-1463.
    19. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    20. Milan Miric & Nan Jia & Kenneth G. Huang, 2023. "Using supervised machine learning for large‐scale classification in management research: The case for identifying artificial intelligence patents," Strategic Management Journal, Wiley Blackwell, vol. 44(2), pages 491-519, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.00251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.