IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.06472.html
   My bibliography  Save this paper

The Stackelberg Game: responses to regular strategies

Author

Listed:
  • Thomas Byrne

Abstract

Following the solution to the One-Round Voronoi Game in arXiv:2011.13275, we naturally may want to consider similar games based upon the competitive locating of points and subsequent dividing of territories. In order to appease the tears of White (the first player) after they have potentially been tricked into going first in a game of point-placement, an alternative game (or rather, an extension of the Voronoi game) is the Stackelberg game where all is not lost if Black (the second player) gains over half of the contested area. It turns out that plenty of results can be transferred from One-Round Voronoi Game and what remains to be explored for the Stackelberg game is how best White can mitigate the damage of Black's placements. Since significant weaknesses in certain arrangements were outlined in arXiv:2011.13275, we shall first consider arrangements that still satisfy these results (namely, White plays a certain grid arrangement) and then explore how Black can best exploit these positions.

Suggested Citation

  • Thomas Byrne, 2022. "The Stackelberg Game: responses to regular strategies," Papers 2211.06472, arXiv.org.
  • Handle: RePEc:arx:papers:2211.06472
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.06472
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Igor Averbakh & Oded Berman & Jörg Kalcsics & Dmitry Krass, 2015. "Structural Properties of Voronoi Diagrams in Facility Location Problems with Continuous Demand," Operations Research, INFORMS, vol. 63(2), pages 394-411, April.
    2. Plastria, Frank, 2001. "Static competitive facility location: An overview of optimisation approaches," European Journal of Operational Research, Elsevier, vol. 129(3), pages 461-470, March.
    3. Drezner, Zvi, 1982. "Competitive location strategies for two facilities," Regional Science and Urban Economics, Elsevier, vol. 12(4), pages 485-493, November.
    4. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    5. Eiselt, H. A. & Laporte, Gilbert, 1997. "Sequential location problems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 217-231, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Redondo & A. Arrondo & J. Fernández & I. García & P. Ortigosa, 2013. "A two-level evolutionary algorithm for solving the facility location and design (1|1)-centroid problem on the plane with variable demand," Journal of Global Optimization, Springer, vol. 56(3), pages 983-1005, July.
    2. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    3. Thomas Byrne & Sándor P. Fekete & Jörg Kalcsics & Linda Kleist, 2023. "Competitive location problems: balanced facility location and the One-Round Manhattan Voronoi Game," Annals of Operations Research, Springer, vol. 321(1), pages 79-101, February.
    4. Crönert, Tobias & Martin, Layla & Minner, Stefan & Tang, Christopher S., 2024. "Inverse optimization of integer programming games for parameter estimation arising from competitive retail location selection," European Journal of Operational Research, Elsevier, vol. 312(3), pages 938-953.
    5. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    6. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    7. Buechel, Berno & Roehl, Nils, 2015. "Robust equilibria in location games," European Journal of Operational Research, Elsevier, vol. 240(2), pages 505-517.
    8. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    9. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    10. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    11. Redondo, Juana L. & Fernández, José & Arrondo, Aránzazu G. & García, Inmaculada & Ortigosa, Pilar M., 2012. "Fixed or variable demand? Does it matter when locating a facility?," Omega, Elsevier, vol. 40(1), pages 9-20, January.
    12. M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
    13. Blas Pelegrín & Pascual Fernández & María Dolores García Pérez, 2016. "Profit maximization and reduction of the cannibalization effect in chain expansion," Annals of Operations Research, Springer, vol. 246(1), pages 57-75, November.
    14. Fernández, José & Hendrix, Eligius M.T., 2013. "Recent insights in Huff-like competitive facility location and design," European Journal of Operational Research, Elsevier, vol. 227(3), pages 581-584.
    15. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    16. S Rezapour & R Zanjirani Farahani & T Drezner, 2011. "Strategic design of competing supply chain networks for inelastic demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1784-1795, October.
    17. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    18. Dempe, Stephan & Kalashnikov, Vyacheslav & Rios-Mercado, Roger Z., 2005. "Discrete bilevel programming: Application to a natural gas cash-out problem," European Journal of Operational Research, Elsevier, vol. 166(2), pages 469-488, October.
    19. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    20. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.06472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.