IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.00453.html
   My bibliography  Save this paper

Exchange option pricing under variance gamma-like models

Author

Listed:
  • Matteo Gardini
  • Piergiacomo Sabino

Abstract

In this article we focus on the pricing of exchange options when the dynamic of logprices follows either the well-known variance gamma or the recent variance gamma++ process introduced in Gardini et al [19]. In particular, for the former model we can derive a Margrabe's type formula whereas, for the latter one we can write an "integral free" formula. Furthermore, we show how to construct a general multidimensional versions of the variance gamma++ processes preserving both the mathematical and numerical tractability. Finally we apply the derived models to German and French energy power markets: we calibrate their parameters using real market data and we accordingly evaluate exchange options with the derived closed formulas, Fourier based methods and Monte Carlo techniques.

Suggested Citation

  • Matteo Gardini & Piergiacomo Sabino, 2022. "Exchange option pricing under variance gamma-like models," Papers 2207.00453, arXiv.org.
  • Handle: RePEc:arx:papers:2207.00453
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.00453
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2021. "A Bivariate Normal Inverse Gaussian Process with Stochastic Delay: Efficient Simulations and Applications to Energy Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(2), pages 178-199, March.
    4. Bjerksund, Petter & Stensland, Gunnar, 2006. "Closed form spread option valuation," Discussion Papers 2006/20, Norwegian School of Economics, Department of Business and Management Science.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Li, Minqiang, 2008. "Closed-Form Approximations for Spread Option Prices and Greeks," MPRA Paper 6994, University Library of Munich, Germany.
    7. Markus Michaelsen & Alexander Szimayer, 2018. "Marginal consistent dependence modelling using weak subordination for Brownian motions," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1909-1925, November.
    8. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    9. T. R. Hurd & Zhuowei Zhou, 2009. "A Fourier transform method for spread option pricing," Papers 0902.3643, arXiv.org.
    10. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    11. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.
    12. Patrizia Semeraro, 2008. "A Multivariate Variance Gamma Model For Financial Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-18.
    13. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    14. Pellegrino, Tommaso & Sabino, Piergiacomo, 2014. "On the use of the moment-matching technique for pricing and hedging multi-asset spread options," Energy Economics, Elsevier, vol. 45(C), pages 172-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.
    2. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2021. "Correlating Lévy processes with self-decomposability: applications to energy markets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1253-1280, December.
    3. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "Correlating L\'evy processes with Self-Decomposability: Applications to Energy Markets," Papers 2004.04048, arXiv.org, revised Jul 2020.
    4. Alexander Kushpel, 2015. "Pricing of high-dimensional options," Papers 1510.07221, arXiv.org.
    5. Edward P. C. Kao & Weiwei Xie, 2017. "Pricing spread options by generalized bivariate edgeworth expansion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-30, June.
    6. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    7. Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
    8. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets," Papers 2011.04256, arXiv.org.
    9. Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, University of Reading.
    10. Luiz Vitiello & Ivonia Rebelo, 2015. "A note on the pricing of multivariate contingent claims under a transformed-gamma distribution," Review of Derivatives Research, Springer, vol. 18(3), pages 291-300, October.
    11. Matthias Berger & Christian Matt & Jochen Gönsch & Thomas Hess, 2019. "Is the Time Ripe? How the Value of Waiting and Incentives Affect Users’ Switching Behaviors for Smart Home Devices," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(1), pages 91-123, February.
    12. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    13. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    14. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    15. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    16. D. J. Manuge, 2015. "L\'evy Processes For Finance: An Introduction In R," Papers 1503.03902, arXiv.org.
    17. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    18. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    19. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Nicola Cufaro Petroni & Piergiacomo Sabino, 2015. "Cointegrating Jumps: an Application to Energy Facilities," Papers 1509.01144, arXiv.org, revised Jul 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.00453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.