IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.11606.html
   My bibliography  Save this paper

Pricing options on flow forwards by neural networks in Hilbert space

Author

Listed:
  • Fred Espen Benth
  • Nils Detering
  • Luca Galimberti

Abstract

We propose a new methodology for pricing options on flow forwards by applying infinite-dimensional neural networks. We recast the pricing problem as an optimization problem in a Hilbert space of real-valued function on the positive real line, which is the state space for the term structure dynamics. This optimization problem is solved by facilitating a novel feedforward neural network architecture designed for approximating continuous functions on the state space. The proposed neural net is built upon the basis of the Hilbert space. We provide an extensive case study that shows excellent numerical efficiency, with superior performance over that of a classical neural net trained on sampling the term structure curves.

Suggested Citation

  • Fred Espen Benth & Nils Detering & Luca Galimberti, 2022. "Pricing options on flow forwards by neural networks in Hilbert space," Papers 2202.11606, arXiv.org.
  • Handle: RePEc:arx:papers:2202.11606
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.11606
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    2. Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse & Tuan Anh Nguyen, 2020. "A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-34, April.
    3. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    4. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU Network Expression Rates for Option Prices in high-dimensional, exponential L\'evy models," Papers 2101.11897, arXiv.org, revised Jul 2021.
    5. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    6. Jacob Bjerre Skov & David Skovmand, 2021. "Dynamic Term Structure Models for SOFR Futures," Papers 2103.11180, arXiv.org.
    7. Jacob Bjerre Skov & David Skovmand, 2021. "Dynamic term structure models for SOFR futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1520-1544, October.
    8. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    9. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    10. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    11. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.
    12. Benth, Fred Espen & Koekebakker, Steen, 2008. "Stochastic modeling of financial electricity contracts," Energy Economics, Elsevier, vol. 30(3), pages 1116-1157, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    2. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.
    3. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    4. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    5. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    6. Giorgia Callegaro & Martino Grasselli & Gilles Paèes, 2021. "Fast Hybrid Schemes for Fractional Riccati Equations (Rough Is Not So Tough)," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 221-254, February.
    7. Damiano Brigo & Xiaoshan Huang & Andrea Pallavicini & Haitz Saez de Ocariz Borde, 2021. "Interpretability in deep learning for finance: a case study for the Heston model," Papers 2104.09476, arXiv.org.
    8. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    9. Patryk Gierjatowicz & Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch & v{Z}an v{Z}uriv{c}, 2020. "Robust pricing and hedging via neural SDEs," Papers 2007.04154, arXiv.org.
    10. Francesca Biagini & Lukas Gonon & Niklas Walter, 2023. "Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models," Papers 2309.14784, arXiv.org.
    11. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    12. Claudio Fontana & Zorana Grbac & Thorsten Schmidt, 2022. "Term structure modelling with overnight rates beyond stochastic continuity," Papers 2202.00929, arXiv.org, revised Aug 2023.
    13. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    14. Claudio Fontana, 2022. "Caplet pricing in affine models for alternative risk-free rates," Papers 2202.09116, arXiv.org, revised Jan 2023.
    15. David Skovmand & Jacob Bjerre Skov, 2022. "Decomposing LIBOR in Transition: Evidence from the Futures Markets," Papers 2201.06930, arXiv.org, revised Mar 2022.
    16. Backwell, Alex & Hayes, Joshua, 2022. "Expected and Unexpected Jumps in the Overnight Rate: Consistent Management of the Libor Transition," Journal of Banking & Finance, Elsevier, vol. 145(C).
    17. Marek Rutkowski & Matthew Bickersteth, 2021. "Pricing and Hedging of SOFR Derivatives under Differential Funding Costs and Collateralization," Papers 2112.14033, arXiv.org.
    18. Alessandro Gnoatto & Silvia Lavagnini, 2023. "Cross-Currency Heath-Jarrow-Morton Framework in the Multiple-Curve Setting," Papers 2312.13057, arXiv.org.
    19. Benth, Fred Espen & Paraschiv, Florentina, 2016. "A Structural Model for Electricity Forward Prices," Working Papers on Finance 1611, University of St. Gallen, School of Finance.
    20. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.11606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.