IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v145y2022ics0378426622002497.html
   My bibliography  Save this article

Expected and Unexpected Jumps in the Overnight Rate: Consistent Management of the Libor Transition

Author

Listed:
  • Backwell, Alex
  • Hayes, Joshua

Abstract

Interest-rate benchmark reform has revived short-rate modelling. One reason is that short-rate models provide a consistent framework in which different benchmarks, and contracts linked to them, can be compared. Another reason is that new benchmarks can be directly dependent on very short-term rates; the key example is a backward-looking compounding of overnight rates, a prominent alternative to forward-looking Libor. Indeed, under Libor, one can often safely ignore aspects of short-rate behaviour, especially jumps. At least partially for this reason, jumps are inadequately treated in the interest-rate literature, particularly expected jumps (jumps with known timing). We estimate a model with expected and unexpected jumps, which involves separating their effect on term rates. We then price forward- and backward-looking caplets, quantifying the spread exhibited by the latter over the former. Expected jumps lead to significantly time-inhomogeneous option behaviour, particularly for short-term options linked to a backward-looking benchmark.

Suggested Citation

  • Backwell, Alex & Hayes, Joshua, 2022. "Expected and Unexpected Jumps in the Overnight Rate: Consistent Management of the Libor Transition," Journal of Banking & Finance, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:jbfina:v:145:y:2022:i:c:s0378426622002497
    DOI: 10.1016/j.jbankfin.2022.106669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426622002497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2022.106669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    2. Andreas Schrimpf & Vladyslav Sushko, 2019. "Beyond LIBOR: a primer on the new benchmark rates," BIS Quarterly Review, Bank for International Settlements, March.
    3. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    4. Jacob Bjerre Skov & David Skovmand, 2021. "Dynamic Term Structure Models for SOFR Futures," Papers 2103.11180, arXiv.org.
    5. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    6. Henrard, Marc, 2007. "The irony in the derivatives discounting," MPRA Paper 3115, University Library of Munich, Germany.
    7. Klingler, Sven & Syrstad, Olav, 2021. "Life after LIBOR," Journal of Financial Economics, Elsevier, vol. 141(2), pages 783-801.
    8. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    9. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    10. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    11. Piazzesi, Monika, 2001. "An Econometric Model of the Yield Curve With Macroeconomic Jump Effects," University of California at Los Angeles, Anderson Graduate School of Management qt5946p7hn, Anderson Graduate School of Management, UCLA.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    14. Don H. Kim & Jonathan H. Wright, 2014. "Jumps in Bond Yields at Known Times," Finance and Economics Discussion Series 2014-100, Board of Governors of the Federal Reserve System (U.S.).
    15. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    16. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    17. Karol Gellert & Erik Schlogl, 2021. "Short Rate Dynamics: A Fed Funds and SOFR Perspective," Research Paper Series 420, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Monika Piazzesi, 2001. "An Econometric Model of the Yield Curve with Macroeconomic Jump Effects," NBER Working Papers 8246, National Bureau of Economic Research, Inc.
    19. Filipović, Damir & Trolle, Anders B., 2013. "The term structure of interbank risk," Journal of Financial Economics, Elsevier, vol. 109(3), pages 707-733.
    20. Jacob Bjerre Skov & David Skovmand, 2021. "Dynamic term structure models for SOFR futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1520-1544, October.
    21. Alex Backwell & Andrea Macrina & Erik Schlogl & David Skovmand, 2019. "Term Rates, Multicurve Term Structures and Overnight Rate Benchmarks: A Roll-Over Risk Approach," Research Paper Series 400, Quantitative Finance Research Centre, University of Technology, Sydney.
    22. Dybvig, Philip H & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1996. "Long Forward and Zero-Coupon Rates Can Never Fall," The Journal of Business, University of Chicago Press, vol. 69(1), pages 1-25, January.
    23. Damir Filipović & Martin Larsson & Anders B. Trolle, 2017. "Linear-Rational Term Structure Models," Journal of Finance, American Finance Association, vol. 72(2), pages 655-704, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Gnoatto & Silvia Lavagnini, 2023. "Cross-Currency Heath-Jarrow-Morton Framework in the Multiple-Curve Setting," Papers 2312.13057, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Rutkowski & Matthew Bickersteth, 2021. "Pricing and Hedging of SOFR Derivatives under Differential Funding Costs and Collateralization," Papers 2112.14033, arXiv.org.
    2. repec:uts:finphd:41 is not listed on IDEAS
    3. David Skovmand & Jacob Bjerre Skov, 2022. "Decomposing LIBOR in Transition: Evidence from the Futures Markets," Papers 2201.06930, arXiv.org, revised Mar 2022.
    4. Alessandro Gnoatto & Silvia Lavagnini, 2023. "Cross-Currency Heath-Jarrow-Morton Framework in the Multiple-Curve Setting," Papers 2312.13057, arXiv.org.
    5. Karol Gellert & Erik Schlogl, 2021. "Short Rate Dynamics: A Fed Funds and SOFR perspective," Papers 2101.04308, arXiv.org.
    6. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    7. Claudio Fontana & Zorana Grbac & Thorsten Schmidt, 2022. "Term structure modelling with overnight rates beyond stochastic continuity," Papers 2202.00929, arXiv.org, revised Aug 2023.
    8. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    9. Fanelli, Viviana, 2017. "Implications of implicit credit spread volatilities on interest rate modelling," European Journal of Operational Research, Elsevier, vol. 263(2), pages 707-718.
    10. repec:wyi:journl:002109 is not listed on IDEAS
    11. Backwell, Alex, 2021. "Unspanned stochastic volatility from an empirical and practical perspective," Journal of Banking & Finance, Elsevier, vol. 122(C).
    12. Eric Jondeau & Benoit Mojon & Jean-Guillaume Sahuc, 2020. "Bank Funding Cost and Liquidity Supply Regimes," BIS Working Papers 854, Bank for International Settlements.
    13. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    14. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    15. Filipović, Damir & Trolle, Anders B., 2013. "The term structure of interbank risk," Journal of Financial Economics, Elsevier, vol. 109(3), pages 707-733.
    16. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Papers 1801.04994, arXiv.org, revised Feb 2018.
    17. Claudio Fontana & Markus Pelger & Eckhard Platen, 2017. "Sure Profits via Flash Strategies and the Impossibility of Predictable Jumps," Research Paper Series 385, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
    19. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
    20. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    21. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Risks, MDPI, vol. 6(1), pages 1-39, March.
    22. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Benchmark reform; Libor transition; interest-rate jumps; short-rate modelling; stochastic discontinuities; interest-rate options;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:145:y:2022:i:c:s0378426622002497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.