IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.04218.html
   My bibliography  Save this paper

Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?

Author

Listed:
  • Matthew Harding
  • Gabriel F. R. Vasconcelos

Abstract

We use machine learning techniques to investigate whether it is possible to replicate the behavior of bank managers who assess the risk of commercial loans made by a large commercial US bank. Even though a typical bank already relies on an algorithmic scorecard process to evaluate risk, bank managers are given significant latitude in adjusting the risk score in order to account for other holistic factors based on their intuition and experience. We show that it is possible to find machine learning algorithms that can replicate the behavior of the bank managers. The input to the algorithms consists of a combination of standard financials and soft information available to bank managers as part of the typical loan review process. We also document the presence of significant heterogeneity in the adjustment process that can be traced to differences across managers and industries. Our results highlight the effectiveness of machine learning based analytic approaches to banking and the potential challenges to high-skill jobs in the financial sector.

Suggested Citation

  • Matthew Harding & Gabriel F. R. Vasconcelos, 2022. "Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?," Papers 2202.04218, arXiv.org.
  • Handle: RePEc:arx:papers:2202.04218
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.04218
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Jules H. van Binsbergen & Xiao Han & Alejandro Lopez-Lira, 2020. "Man vs. Machine Learning: The Term Structure of Earnings Expectations and Conditional Biases," NBER Working Papers 27843, National Bureau of Economic Research, Inc.
    3. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    4. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.
    5. Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021. "Selecting Directors Using Machine Learning," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3226-3264, National Bureau of Economic Research, Inc.
    6. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    7. James T. Hamilton & W. Kip Viscusi, 1999. "Calculating Risks?: The Spatial and Political Dimensions of Hazardous Waste Policy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262082780, December.
    8. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    9. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    10. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    11. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    12. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    13. D Martens & T Van Gestel & M De Backer & R Haesen & J Vanthienen & B Baesens, 2010. "Credit rating prediction using Ant Colony Optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 561-573, April.
    14. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    15. Bernd Engelmann & Robert Rauhmeier (ed.), 2006. "The Basel II Risk Parameters," Springer Books, Springer, number 978-3-540-33087-5, September.
    16. Van Gestel, Tony & Baesens, Bart, 2008. "Credit Risk Management: Basic Concepts: Financial Risk Components, Rating Analysis, Models, Economic and Regulatory Capital," OUP Catalogue, Oxford University Press, number 9780199545117.
    17. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    18. Carmona, Pedro & Climent, Francisco & Momparler, Alexandre, 2019. "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 304-323.
    19. Crook, Jonathan & Banasik, John, 2004. "Does reject inference really improve the performance of application scoring models?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 857-874, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    2. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    3. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    4. Colak, Gonul & Fu, Mengchuan & Hasan, Iftekhar, 2022. "On modeling IPO failure risk," Economic Modelling, Elsevier, vol. 109(C).
    5. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    6. Chaeshick Chung & Sukjin Park, 2021. "Deep Learning Market Microstructure: Dual-Stage Attention-Based Recurrent Neural Networks," Working Papers 2108, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    7. Philippe Goulet Coulombe & Maximilian Goebel, 2023. "Maximally Machine-Learnable Portfolios," Papers 2306.05568, arXiv.org, revised Apr 2024.
    8. Philippe Goulet Coulombe & Maximilian Gobel, 2023. "Maximally Machine-Learnable Portfolios," Working Papers 23-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Apr 2023.
    9. Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
    10. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    11. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
    12. Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    13. Herrera, Rubén & Climent, Francisco & Carmona, Pedro & Momparler, Alexandre, 2022. "The manipulation of Euribor: An analysis with machine learning classification techniques," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    15. Chen, Rui & Ren, Jinjuan, 2022. "Do AI-powered mutual funds perform better?," Finance Research Letters, Elsevier, vol. 47(PA).
    16. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    17. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    18. Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    19. Chariton Chalvatzis & Dimitrios Hristu-Varsakelis, 2019. "High-performance stock index trading: making effective use of a deep LSTM neural network," Papers 1902.03125, arXiv.org, revised May 2019.
    20. Marcio Salles Melo Lima & Enes Eryarsoy & Dursun Delen, 2021. "Predicting and Explaining Pig Iron Production on Charcoal Blast Furnaces: A Machine Learning Approach," Interfaces, INFORMS, vol. 51(3), pages 213-235, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.04218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.