IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.03505.html
   My bibliography  Save this paper

Prediction of financial time series using LSTM and data denoising methods

Author

Listed:
  • Qi Tang
  • Tongmei Fan
  • Ruchen Shi
  • Jingyan Huang
  • Yidan Ma

Abstract

In order to further overcome the difficulties of the existing models in dealing with the non-stationary and nonlinear characteristics of high-frequency financial time series data, especially its weak generalization ability, this paper proposes an ensemble method based on data denoising methods, including the wavelet transform (WT) and singular spectrum analysis (SSA), and long-term short-term memory neural network (LSTM) to build a data prediction model, The financial time series is decomposed and reconstructed by WT and SSA to denoise. Under the condition of denoising, the smooth sequence with effective information is reconstructed. The smoothing sequence is introduced into LSTM and the predicted value is obtained. With the Dow Jones industrial average index (DJIA) as the research object, the closing price of the DJIA every five minutes is divided into short-term (1 hour), medium-term (3 hours) and long-term (6 hours) respectively. . Based on root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and absolute percentage error standard deviation (SDAPE), the experimental results show that in the short-term, medium-term and long-term, data denoising can greatly improve the accuracy and stability of the prediction, and can effectively improve the generalization ability of LSTM prediction model. As WT and SSA can extract useful information from the original sequence and avoid overfitting, the hybrid model can better grasp the sequence pattern of the closing price of the DJIA. And the WT-LSTM model is better than the benchmark LSTM model and SSA-LSTM model.

Suggested Citation

  • Qi Tang & Tongmei Fan & Ruchen Shi & Jingyan Huang & Yidan Ma, 2021. "Prediction of financial time series using LSTM and data denoising methods," Papers 2103.03505, arXiv.org.
  • Handle: RePEc:arx:papers:2103.03505
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.03505
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Se-Hak Chun & Young-Woong Ko, 2020. "Geometric Case Based Reasoning for Stock Market Prediction," Sustainability, MDPI, vol. 12(17), pages 1-11, September.
    2. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    3. Sert, Onur Can & Şahin, Salih Doruk & Özyer, Tansel & Alhajj, Reda, 2020. "Analysis and prediction in sparse and high dimensional text data: The case of Dow Jones stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    2. Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022. ""Density forecasts of inflation using Gaussian process regression models"," IREA Working Papers 202210, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
    3. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    4. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    5. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    6. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    8. Robert RUSU & Constantin AVRAM, 2022. "Deep Learning Systems Integrated into the Digital Strategy of a Company Involved in e-commerce," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 5-10.
    9. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
    10. Koffi, Siméon, 2022. "Prévision de l’inflation en Côte D’ivoire : Analyse Comparée des Modèles Arima, Holt-Winters, et Lstm [Inflation Forecasting in Côte D'Ivoire: A Comparative Analysis of the Arima, Holt-Winters, and," MPRA Paper 113961, University Library of Munich, Germany.
    11. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    12. Ben Moews & J. Michael Herrmann & Gbenga Ibikunle, 2018. "Lagged correlation-based deep learning for directional trend change prediction in financial time series," Papers 1811.11287, arXiv.org, revised Nov 2018.
    13. Rian Dolphin & Barry Smyth & Ruihai Dong, 2023. "Industry Classification Using a Novel Financial Time-Series Case Representation," Papers 2305.00245, arXiv.org.
    14. Green, Gareth & Richards, Timothy, 2016. "Interpreting Results of Demand Estimation from Machine Learning Models," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236147, Agricultural and Applied Economics Association.
    15. Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
    16. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    17. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    18. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    19. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    20. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.03505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.