IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.00298.html
   My bibliography  Save this paper

Global health science leverages established collaboration network to fight COVID-19

Author

Listed:
  • Stefano Bianchini
  • Moritz Muller
  • Pierre Pelletier
  • Kevin Wirtz

Abstract

How has the science system reacted to the early stages of the COVID-19 pandemic? Here we compare the (growing) international network for coronavirus research with the broader international health science network. Our findings show that, before the outbreak, coronavirus research realized a relatively small and rather peculiar niche within the global health sciences. As a response to the pandemic, the international network for coronavirus research expanded rapidly along the hierarchical structure laid out by the global health science network. Thus, in face of the crisis, the global health science system proved to be structurally stable yet versatile in research. The observed versatility supports optimistic views on the role of science in meeting future challenges. However, the stability of the global core-periphery structure may be worrying, because it reduces learning opportunities and social capital of scientifically peripheral countries -- not only during this pandemic but also in its "normal" mode of operation.

Suggested Citation

  • Stefano Bianchini & Moritz Muller & Pierre Pelletier & Kevin Wirtz, 2021. "Global health science leverages established collaboration network to fight COVID-19," Papers 2102.00298, arXiv.org.
  • Handle: RePEc:arx:papers:2102.00298
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.00298
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    2. Jonathan Adams, 2013. "The fourth age of research," Nature, Nature, vol. 497(7451), pages 557-560, May.
    3. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    2. Nizar Allouch, 2017. "Aggregation in Networks," Studies in Economics 1718, School of Economics, University of Kent.
    3. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    4. Markus Kinateder & Luca Paolo Merlino, 2021. "The Evolution of Networks and Local Public Good Provision: A Potential Approach," Games, MDPI, vol. 12(3), pages 1-12, July.
    5. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    6. Laurent R. Bergé, 2017. "Network proximity in the geography of research collaboration," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 785-815, November.
    7. Daniele Cassese & Paolo Pin, 2018. "Decentralized Pure Exchange Processes on Networks," Papers 1803.08836, arXiv.org, revised Mar 2022.
    8. Abramo, Giovanni & D'Angelo, Ciriaco Andrea & Di Costa, Flavia, 2021. "The scholarly impact of private sector research: A multivariate analysis," Journal of Informetrics, Elsevier, vol. 15(3).
    9. Mario V. Tomasello & Mauro Napoletano & Antonios Garas & Frank Schweitzer, 2017. "The rise and fall of R&D networks," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(4), pages 617-646.
    10. Svein Kyvik & Ingvild Reymert, 2017. "Research collaboration in groups and networks: differences across academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 951-967, November.
    11. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Di Costa, 2020. "The relative impact of private research on scientific advancement," Papers 2012.04908, arXiv.org.
    12. Nora, Vladyslav & Winter, Eyal, 2024. "Exploiting social influence in networks," Theoretical Economics, Econometric Society, vol. 19(1), January.
    13. Jeffrey Demaine, 2022. "Fractionalization of research impact reveals global trends in university collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2235-2247, May.
    14. Péter Bayer & Ani Guerdjikova, 2020. "Optimism leads to optimality: Ambiguity in network formation," Working Papers hal-03005107, HAL.
    15. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    16. in 't Veld, Daan & van der Leij, Marco & Hommes, Cars, 2020. "The formation of a core-periphery structure in heterogeneous financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    17. Gualdi, Stanislao & Mandel, Antoine, 2016. "On the emergence of scale-free production networks," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 61-77.
    18. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    19. V'it Mach'av{c}ek, 2021. "Globalization of Scientific Communication: Evidence from authors in academic journals by country of origin," Papers 2112.02672, arXiv.org.
    20. Belhaj, Mohamed & Bramoullé, Yann & Deroïan, Frédéric, 2014. "Network games under strategic complementarities," Games and Economic Behavior, Elsevier, vol. 88(C), pages 310-319.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.00298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.