IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.06247.html
   My bibliography  Save this paper

Optimal Collaterals in Multi-Enterprise Investment Networks

Author

Listed:
  • Moshe Babaioff
  • Yoav Kolumbus
  • Eyal Winter

Abstract

We study a market of investments on networks, where each agent (vertex) can invest in any enterprise linked to her, and at the same time, raise capital for her firm's enterprise from other agents she is linked to. Failing to raise sufficient capital results with the firm defaulting, being unable to invest in others. Our main objective is to examine the role of collateral contracts in handling the strategic risk that can propagate to a systemic risk throughout the network in a cascade of defaults. We take a mechanism-design approach and solve for the optimal scheme of collateral contracts that capital raisers offer their investors. These contracts aim at sustaining the efficient level of investment as a unique Nash equilibrium, while minimizing the total collateral. Our main results contrast the network environment with its non-network counterpart (where the sets of investors and capital raisers are disjoint). We show that for acyclic investment networks, the network environment does not necessitate any additional collaterals, and systemic risk can be fully handled by optimal bilateral collateral contracts between capital raisers and their investors. This is, unfortunately, not the case for cyclic investment networks. We show that bilateral contracting will not suffice to resolve systemic risk, and the market will need an external entity to design a global collateral scheme for all capital raisers. Furthermore, the minimum total collateral that will sustain the efficient level of investment as a unique equilibrium may be arbitrarily higher, even in simple cyclic investment networks, compared with its corresponding non-network environment. Additionally, we prove computational-complexity results, both for a single enterprise and for networks.

Suggested Citation

  • Moshe Babaioff & Yoav Kolumbus & Eyal Winter, 2020. "Optimal Collaterals in Multi-Enterprise Investment Networks," Papers 2011.06247, arXiv.org, revised Mar 2022.
  • Handle: RePEc:arx:papers:2011.06247
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.06247
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    2. Ben S. Bernanke & Mark Gertler, 1986. "Agency costs, collateral, and business fluctuations," Proceedings, Federal Reserve Bank of San Francisco.
    3. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    4. Nisan, Noam & Ronen, Amir, 2001. "Algorithmic Mechanism Design," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 166-196, April.
    5. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    6. Ben Bernanke & Mark Gertler, 1990. "Financial Fragility and Economic Performance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 87-114.
    7. Matthew O. Jackson & Agathe Pernoud, 2021. "Systemic Risk in Financial Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 171-202, August.
    8. L. C. G. Rogers & L. A. M. Veraart, 2013. "Failure and Rescue in an Interbank Network," Management Science, INFORMS, vol. 59(4), pages 882-898, April.
    9. Jordi Brandts & David J. Cooper, 2006. "A Change Would Do You Good .... An Experimental Study on How to Overcome Coordination Failure in Organizations," American Economic Review, American Economic Association, vol. 96(3), pages 669-693, June.
    10. Amir Ban & Moran Koren, 2020. "Sequential Fundraising and Mutual Insurance," Papers 2005.10711, arXiv.org, revised Dec 2021.
    11. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Siebenbrunner, 2021. "Quantifying the importance of different contagion channels as sources of systemic risk," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 103-131, January.
    2. Kotlicki, Artur & Austin, Andrea & Humphry, David & Burnett, Hanna & Ridgill, Philip & Smith, Sam, 2023. "Network analysis of the UK reinsurance market," Bank of England working papers 1000, Bank of England.
    3. Gabrielle Demange, 2018. "Contagion in Financial Networks: A Threat Index," Management Science, INFORMS, vol. 64(2), pages 955-970, February.
    4. Barnett, William A. & Wang, Xue & Xu, Hai-Chuan & Zhou, Wei-Xing, 2022. "Hierarchical contagions in the interdependent financial network," Journal of Financial Stability, Elsevier, vol. 61(C).
    5. Elliott, Matthew & Georg, Co-Pierre & Hazell, Jonathon, 2021. "Systemic risk shifting in financial networks," Journal of Economic Theory, Elsevier, vol. 191(C).
    6. Spiros Bougheas & Adam Hal Spencer, 2022. "Fire sales and ex ante valuation of systemic risk: A financial equilibrium networks approach," Discussion Papers 2022/04, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    7. Nils Bertschinger & Axel A. Araneda, 2021. "Cross-ownership as a structural explanation for rising correlations in crisis times," Papers 2112.04824, arXiv.org.
    8. Giansante, Simone & Manfredi, Sabato & Markose, Sheri, 2023. "Fair immunization and network topology of complex financial ecosystems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    9. Christoph Aymanns & J. Doyne Farmer & Alissa M. Keinniejenhuis & Thom Wetzer, 2017. "Models of Financial Stability and their Application in Stress Tests," Working Papers on Finance 1805, University of St. Gallen, School of Finance.
    10. Péter Csóka & P. Jean-Jacques Herings, 2018. "Decentralized Clearing in Financial Networks," Management Science, INFORMS, vol. 64(10), pages 4681-4699, October.
    11. Feinstein Zachary & El-Masri Fatena, 2017. "The effects of leverage requirements and fire sales on financial contagion via asset liquidation strategies in financial networks," Statistics & Risk Modeling, De Gruyter, vol. 34(3-4), pages 113-139, September.
    12. Tathagata Banerjee & Zachary Feinstein, 2018. "Impact of Contingent Payments on Systemic Risk in Financial Networks," Papers 1805.08544, arXiv.org, revised Dec 2018.
    13. Csoka, Péter & Herings, P. Jean-Jacques, 2016. "Decentralized Clearing in Financial Networks (RM/16/005-revised-)," Research Memorandum 037, Maastricht University, Graduate School of Business and Economics (GSBE).
    14. Covi, Giovanni & Gorpe, Mehmet Ziya & Kok, Christoffer, 2021. "CoMap: Mapping Contagion in the Euro Area Banking Sector," Journal of Financial Stability, Elsevier, vol. 53(C).
    15. Shi, Qing & Sun, Xiaoqi & Jiang, Yile, 2022. "Concentrated commonalities and systemic risk in China's banking system: A contagion network approach," International Review of Financial Analysis, Elsevier, vol. 83(C).
    16. Hamed Amini & Zachary Feinstein, 2020. "Optimal Network Compression," Papers 2008.08733, arXiv.org, revised Jul 2022.
    17. Bardoscia, Marco & Ka-Kay Pang, Raymond, 2023. "Ring-fencing in financial networks," Bank of England working papers 1046, Bank of England.
    18. Nan Chen & Xin Liu & David D. Yao, 2016. "An Optimization View of Financial Systemic Risk Modeling: Network Effect and Market Liquidity Effect," Operations Research, INFORMS, vol. 64(5), pages 1089-1108, October.
    19. Cuba, Walter & Rodriguez-Martinez, Anahi & Chavez, Diego A. & Caccioli, Fabio & Martinez-Jaramillo, Serafin, 2021. "A network characterization of the interbank exposures in Peru," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(3).
    20. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.06247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.